Optimizing Random Forest for IoT Cyberattack Detection UsingSMOTE: A Study on CIC-IoT2023 Dataset
DOI:
https://doi.org/10.30812/matrik.v25i1.5382Keywords:
CIC-IoT2023, Internet of Things, Intrusion Detection System, SMOTE, Random ForestAbstract
The growing number of Internet of Things devices has led to an increased risk of complex and diverse cyberattacks. However, a significant challenge in this domain is the imbalanced class distribution in most Internet of Things datasets, cautilizing classification algorithms to be biased towards the majority class, hindering effective threat detection. This study addresses this issue by leveraging the Random Forest algorithm optimised by the Synthetic Minority Oversampling Technique. This research aims to develop an effective model for detecting cyberattacks in Internet of Things environments by resolving class imbalance issues inside of the CIC-IoT2023 dataset. The methodology involves several stages, comprising data preprocessing and applying Synthetic Minority Oversampling Technique for data balancing. The balanced dataset was then used to train a Random Forest model, by its performance evaluated utilizing accuracy, precision, recall, F1-score, and Cohen's Kappa metrics. The results demonstrate the model's effectiveness, achieving an accuracy of 99.01%, an F1-score of 98.96%, and a Cohen's Kappa of 98.92%. This marks a notable improvement in performance, particularly in detecting minority classes, compared to the model trained devoid of Synthetic Minority Oversampling Technique, that struggled to identify several less common attack types. The outcomes suggest that combining Random Forest by Synthetic Minority Oversampling Technique can significantly enhance the development of intrusion detection systems by improving detection accuracy for all 33 attack types and reducing the risks associated by undetected threats. In conclusion, this study advances Internet of Things cybersecurity by presenting an effective and efficient method for addressing data imbalance in attack detection. Future research should focus on evaluating the model's robustness utilizing more complex datasets and enhancing its performance for real-time deployment on resource-constrained Internet of Things Devices.
Downloads
References
[1] L. Babun, K. Denney, Z. B. Celik, P. McDaniel, and A. S. Uluagac, “A survey on IoT platforms: Communication, security, and
privacy perspectives,” vol. 192, p. 108040, June, 2021, https://doi.org/10.1016/j.comnet.2021.108040.
[2] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep learning for cyber security intrusion detection: Approaches,
datasets, and comparative study,” vol. 50, p. 102419, Februari, 2020, https://doi.org/10.1016/j.jisa.2019.102419.
[3] C. M. Patterson, J. R. C. Nurse, and V. N. L. Franqueira, “Learning from cyber security incidents: A systematic review and future
research agenda,” Computers and Security, vol. 132, p. 103309, September, 2023, https://doi.org/10.1016/j.cose.2023.103309.
[4] I. Cvitic, D. Perakovic, B. B. Gupta, and K.-K. R. Choo, “Boosting-Based DDoS Detection in Internet of Things Systems,”
vol. 9, no. 3, pp. 2109–2123, Februari, 2022, https://doi.org/10.1109/JIOT.2021.3090909.
[5] O. Zorlu and A. Ozsoy, “A blockchain-based secure framework for data management,” vol. 18, no. 10, pp. 628–653, June, 2024,
https://doi.org/10.1049/cmu2.12781.
[6] Z. Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah, and F. Ahmad, “Network intrusion detection system: A systematic
study of machine learning and deep learning approaches,” vol. 32, no. 1, p. e4150, Januari, 2021, https://doi.org/10.1002/ett.
4150.
[7] F.-S. Zamfir, M. Carbureanu, and S. F. Mihalache, “Application of Machine Learning Models in Optimizing Wastewater Treatment
Processes: A Review,” vol. 15, no. 15, p. 8360, July, 2025, https://doi.org/10.3390/app15158360.
[8] R. Ahsan, W. Shi, and J. Corriveau, “Network intrusion detection using machine learning approaches: Addressing data imbalance,”
vol. 7, no. 1, pp. 30–39, March, 2022, https://doi.org/10.1049/cps2.12013.
[9] P. Kaliyaperumal, S. Periyasamy, M. Thirumalaisamy, B. Balusamy, and F. Benedetto, “A Novel Hybrid Unsupervised Learning
Approach for Enhanced Cybersecurity in the IoT,” vol. 16, no. 7, p. 253, July, 2024, https://doi.org/10.3390/fi16070253.
[10] A. S. Tarawneh, A. B. A. Hassanat, K. Almohammadi, D. Chetverikov, and C. Bellinger, “SMOTEFUNA: Synthetic Minority
Over-Sampling Technique Based on Furthest Neighbour Algorithm,” vol. 8, pp. 59 069–59 082, March, 2020, https://doi.org/
10.1109/ACCESS.2020.2983003.
[11] F. Omer Albasheer, R. Ramesh Haibatti, M. Agarwal, and S. Yeob Nam, “A Novel IDS Based on Jaya Optimizer and Smote-
ENN for Cyberattacks Detection,” vol. 12, pp. 101 506–101 527, July, 2024, https://doi.org/10.1109/ACCESS.2024.3431534.
[12] H. Q. Gheni and W. L. Al-Yaseen, “Two-step data clustering for improved intrusion detection system using CICIoT2023
dataset,” e-Prime-Advances in Electrical Engineering, Electronics and Energy, vol. 9, p. 100673, September, 2024, https:
//doi.org/10.1016/j.prime.2024.100673.
[13] J. Li, M. S. Othman, H. Chen, and L. M. Yusuf, “Optimizing IoT intrusion detection system: Feature selection versus feature
extraction in machine learning,” vol. 11, no. 1, p. 36, Februari, 2024, https://doi.org/10.1186/s40537-024-00892-y.
[14] S. Chen and W. Zheng, “RRMSE-enhanced weighted voting regressor for improved ensemble regression,” vol. 20, no. 3, p.
e0319515, March, 2025, https://doi.org/10.1371/journal.pone.0319515.
[15] X. Larriva-Novo, V. A. Villagr´a, M. Vega-Barbas, D. Rivera, and M. Sanz Rodrigo, “An IoT-Focused Intrusion Detection
System Approach Based on Preprocessing Characterization for Cybersecurity Datasets,” vol. 21, no. 2, p. 656, Januari, 2021,
https://doi.org/10.3390/s21020656.
[16] F. Bolikulov, R. Nasimov, A. Rashidov, F. Akhmedov, and Y.-I. Cho, “Effective Methods of Categorical Data Encoding for
Artificial Intelligence Algorithms,” vol. 12, no. 16, p. 2553, August, 2024, https://doi.org/10.3390/math12162553.
[17] S. Abbas, I. Bouazzi, S. Ojo, A. Al Hejaili, G. A. Sampedro, A. Almadhor, and M. Gregus, “Evaluating deep learning variants
for cyber-attacks detection and multi-class classification in IoT networks,” vol. 10, p. e1793, Januari, 2024, https://doi.org/10.
7717/peerj-cs.1793.
[18] A. Alamleh, O. S. Albahri, A. A. Zaidan, A. S. Albahri, A. H. Alamoodi, B. B. Zaidan, S. Qahtan, H. A. Alsatar, M. S. Al-
Samarraay, and A. N. Jasim, “Federated Learning for IoMT Applications: A Standardization and Benchmarking Framework of
Intrusion Detection Systems,” vol. 27, no. 2, pp. 878–887, Februari, 2023, https://doi.org/10.1109/JBHI.2022.3167256.
[19] S. Hizal, U. Cavusoglu, and D. Akgun, “A novel deep learning-based intrusion detection system for IoT DDoS security,” vol. 28,
p. 101336, December, 2024, https://doi.org/10.1016/j.iot.2024.101336.
[20] S. K. Erskine, “Real-Time Large-Scale Intrusion Detection and Prevention System (IDPS) CICIoT Dataset Traffic Assessment
Based on Deep Learning,” vol. 8, no. 2, p. 52, April, 2025, https://doi.org/10.3390/asi8020052.
[21] T. S. Naseri and F. S. Gharehchopogh, “A Feature Selection Based on the Farmland Fertility Algorithm for Improved Intrusion
Detection Systems,” vol. 30, no. 3, p. 40, July, 2022, https://doi.org/10.1007/s10922-022-09653-9.
[22] A. Hussain, K. Naseer Qureshi, K. Javeed, and M. Alhussein, “An Enhanced Intelligent Intrusion Detection System to Secure
E-Commerce Communication Systems,” vol. 47, no. 2, pp. 2513–2528, 2023, https://doi.org/10.32604/csse.2023.040305.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Guntoro Guntoro, Lisnawita Lisnawita, Loneli Costaner

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
How to Cite
Similar Articles
- Edi Ismanto, Januar Al Amien, Vitriani Vitriani, A Comparison of Enhanced Ensemble Learning Techniques for Internet of Things Network Attack Detection , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Ni Gusti Ayu Dasriani, Sirojul Hadi, Moch Syahrir, Intelligent System for Internet of Things-Based Building Fire Safety with Naive Bayes Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Yuri Ariyanto, Yan Watequlis Syaifudin, M. Hasyim Ratsanjani, Ali Ridho Muladawila, Triana Fatmawati, Pramana Yoga Saputra, Chandrasena Setiadi , Cyber Threat Detection and Automated Response UsingWazuh andTelegram API , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 25 No. 1 (2025)
- Muhammad Ibnu Choldun Rachmatullah, The Application of Repeated SMOTE for Multi Class Classification on Imbalanced Data , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Hartono, Khusnul Khotimah, Rokin Maharjan, Improving Detection Accuracy of Brute-Force Attacks on MariaDBUsing Standard Isolation Forest: A Comparative Analysis with RotatedVariant , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 25 No. 1 (2025)
- Erlin Erlin, Yenny Desnelita, Nurliana Nasution, Laili Suryati, Fransiskus Zoromi, Dampak SMOTE terhadap Kinerja Random Forest Classifier berdasarkan Data Tidak seimbang , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Putu Tisna Putra, Anthony Anggrawan, Hairani Hairani, Comparison of Machine Learning Methods for Classifying User Satisfaction Opinions of the PeduliLindungi Application , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Cherfly Kaope, Yoga Pristyanto, The Effect of Class Imbalance Handling on Datasets Toward Classification Algorithm Performance , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Achmad Afif Irwansyah, Aripriharta Aripriharta, Didik Dwi Aripriharta, Stochastic Optimization for Hostage Rescue Using Internet of Things and Queen Honey Bee Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 25 No. 1 (2025)
- Nenny Anggraini, Zulkifli Zulkifli, Nashrul Hakiem, Development of Smart Charity Box Monitoring Robot in Mosque with Internet of Things and Firebase using Raspberry Pi , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
You may also start an advanced similarity search for this article.
.png)











