Electric Vehicle Sales-Prediction Application Using Backpropagation Algorithm Based on Web

  • Ramadhanti Ramadhanti Universitas Bumigora
  • Hairani Hairani Universitas Bumigora
  • Muhammad Innuddin Universitas Bumigora
Keywords: Sales Prediction, Electric Vehicle, Backpropagation Method, Prediction Application

Abstract

The accuracy of predicting future product sales is needed to minimize losses and gain profits. Inventory of goods carried out manually or improper product inventory planning causes the number of goods to accumulate due to the small number of requests, so the goods are damaged. Therefore, a sales prediction system with high accuracy is needed to assist in stocking electric vehicles. This research aimed to predict electric vehicle sales using the web-based backpropagation method. This study uses the backpropagation method to predict electric vehicle sales data from 2015 to 2022. The data is divided into 84 instances as training data and 12 instances as testing data. The result of this study was that the backpropagation method obtained a MAPE error rate of 6.25%. Thus, the backpropagation method can be used for predicting electric vehicle sales because it has a very accurate performance level.

References


A. Anggrawan, H. Hairani, and M. A. Candra, “Prediction of Electricity Usage with Back-propagation Neural Network,” International Journal of Engineering and Computer Science Applications (IJECSA)., vol. 1, no. 1, pp. 9–18, 2022, doi: 10.30812/ijecsa.v1i1.1722.

A. Anggrawan, H. Hairani, and N. Azmi, “Prediksi Penjualan Produk Unilever Menggunakan Metode Regresi Linear,” Jurnal Bumigora Information Technology (BITe), vol. 4, no. 2, pp. 123–132, Dec. 2022. https://doi.org/10.30812/bite.v4i2.2416.

M. K. Wisyaldin, G. M. Luciana, and H. Pariaman, “Pendekatan Long Short-Term Memory untuk Memprediksi Kondisi Motor 10 kV pada PLTU Batubara,” Kilat, vol. 9, no. 2, pp. 311–318, 2020, [Online]. Available: https://doi.org/10.33322/kilat.v9i2.997

A. M. M. Fattah, A. Voutama, N. Heryana, and N. Sulistiyowati, “Pengembangan Model Machine Learning Regresi sebagai Web Service untuk Prediksi Harga Pembelian Mobil dengan Metode CRISP-DM,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 5, p. 1669, 2022, doi: 10.30865/jurikom.v9i5.5021.

L. Wiranda and M. Sadikin, “Penerapan Long Short Term Memory Pada Data Time Series Untuk Memprediksi Penjualan Produk Pt. Metiska Farma,” J. Nas. Pendidik. Tek. Inform., vol. 8, no. 3, pp. 184–196, 2019.
W. Satria, “Jaringan Syaraf Tiruan Backpropagation Untuk Peramalan Penjualan Produk (Studi Kasus Di Metro Electronic Dan Furniture),” Djtechno J. Teknol. Inf., vol. 1, no. 1, pp. 14–19, 2021, doi: 10.46576/djtechno.v1i1.966.

A. Hammaines, C. Setianingsih, and M. A. Murti, “Prediksi Penggunaan Energi Listrik Menggunakan Metode Feedforward Neural Network,” e-Proceeding Eng. , vol. 8, no. 6, pp. 12125–12134, 2021.

E. Hasibuan and A. Karim, “Implementasi Machine Learning untuk Prediksi Harga Mobil Bekas dengan Algoritma Regresi Linear berbasis Web,” J. Ilm. Komputasi, vol. 21, no. 4, pp. 595–602, 2022, doi: 10.32409/jikstik.21.4.3327.

D. Finaliamartha et al., “Untuk Prediksi Tingkat Kemiskinan Di Provinsi Jawa Tengah Implementation of Backpropagation Artificial Neural Network,” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 4, pp. 751–760, 2022, doi: 10.25126/jtiik.202294806.

C. Fauzi and A. Dzulfikar, “Implementation of Product Sales Forecast Using Artificial Neural Network Method,” Int. J. Inf. Syste, vol. 5, no. 36, pp. 153–162, 2021.

Meiryani and D. L. Warganegara, “Implementation of Artificial Neural Network in Forecasting Sales Volume in Tokopedia Indonesia,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 5, pp. 416–421, 2021, doi: 10.14569/IJACSA.2021.0120551.

E. Ismanto, N. Effendi, and E. P. Cynthia, “Implementation of Backpropagation Artificial Neural Networks to Predict Palm Oil Price Fresh Fruit Bunches,” IJISTECH (International J. Inf. Syst. Technol., vol. 2, no. 1, p. 26, 2018, doi: 10.30645/ijistech.v2i1.17.

A. Irianti, P. H. Rantelinggi, A. Taufik, N. Zulkarnaim, and S. Cokrowibowo, “Implementation of Backpropagation Artificial Neural Network For Food Price Prediction in Majene Central Market,” J. Tek. Inform., vol. 3, no. 3, pp. 681–688, 2022, [Online]. Available: https://doi.org/10.20884/1.jutif.2022.3.3.226

M. Jufri, “Implementation of artificial neural network in predicting birth rate in batam city using backpropagation method,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 8, no. 1, pp. 85–94, 2021.

Published
2023-09-25
How to Cite
[1]
R. Ramadhanti, H. Hairani, and M. Innuddin, “Electric Vehicle Sales-Prediction Application Using Backpropagation Algorithm Based on Web”, International Journal of Engineering and Computer Science Applications (IJECSA), vol. 2, no. 2, pp. 79 - 86, Sep. 2023.

Most read articles by the same author(s)

<< < 1 2