Enhancing Mental Illness Predictions: Analyzing Trends Using Multiple Linear Regression and Neural Network Backpropagation
DOI:
https://doi.org/10.30812/ijecsa.v3i2.4391Keywords:
Mental Illness Predictions, Analyzing Trends, Multiple Linear Regression, Neural Network BackpropagationAbstract
The increasing number of mental health cases caused by various factors such as social changes, economic pressures, and technological advancements has made it difficult to accurately predict the number of cases, hindering prevention and early intervention efforts. Therefore, developing more accurate, data-driven predictive models is necessary to improve the effectiveness of prevention and intervention. This study aims to develop a predictive model for the number of mental health cases using Multiple Linear Regression and Neural Network Backpropagation methods. The study employs two predictive methods, Multiple Linear Regression and Neural Network Backpropagation to forecast future trends in the number of mental health cases. The findings reveal that the Neural Network Backpropagation method provides more accurate predictions than Multiple Linear Regression in forecasting mental health case trends. Specifically, the Neural Network Backpropagation method resulted in an MAE of 111.39 and a MAPE of 1.77%, while the Multiple Linear Regression method produced an MAE of 115.24 and a MAPE of 1.83%. Thus, the implication of this study is that the Neural Network Backpropagation method can be utilized to predict trends in the number of mental health cases due to its ability to provide highly accurate predictions.
References
Y. Wu, L. Wang, M. Tao, H. Cao, H. Yuan, M. Ye, X. Chen, K. Wang, and C. Zhu, “Changing trends in the global burden of mental disorders from 1990 to 2019 and predicted levels in 25 years,†Epidemiology and Psychiatric Sciences, vol. 32, pp. 1–9, 2023.<a href="https://doi.org/10.1017/S2045796023000756">https://doi.org/10.1017/S2045796023000756</a>.
R. Jenkins, F. Baingana, R. Ahmad, D. McDaid, and R. Atun, “Social, economic, human rights and political challenges to global mental health,†Mental Health in Family Medicine, vol. 8, no. 2, pp. 87–96, Jun. 2011.
L. Foulkes and J. L. Andrews, “Are mental health awareness efforts contributing to the rise in reported mental health problems? A call to test the prevalence inflation hypothesis,†New Ideas in Psychology, vol. 69, p. 101010, Apr. 2023. <a href="https://doi.org/10.1016/j.newideapsych.2023.101010">https://doi.org/10.1016/j.newideapsych.2023.101010</a>.
J. B. Kirkbride, D. M. Anglin, I. Colman, J. Dykxhoorn, P. B. Jones, P. Patalay, A. Pitman, E. Soneson, T. Steare, T. Wright, and S. L. Griffiths, “The social determinants of mental health and disorder: evidence, prevention and recommendations,†World Psychiatry, vol. 23, no. 1, pp. 58–90, Feb. 2024. <a href="https://doi.org/10.1002/wps.21160">https://doi.org/10.1002/wps.21160</a>.
M. Colizzi, A. Lasalvia, and M. Ruggeri, “Prevention and early intervention in youth mental health: is it time for a multidisciplinary and trans-diagnostic model for care?†International Journal of Mental Health Systems, vol. 14, no. 1, pp. 1–14, Dec. 2020.
M. M. Islam, S. Hassan, S. Akter, F. A. Jibon, and M. Sahidullah, “A comprehensive review of predictive analytics models for mental illness using machine learning algorithms,†Healthcare Analytics, vol. 6, p. 100350, Dec. 2024. <a href="https://doi.org/10.1016/j.health.2024.100350">https://doi.org/10.1016/j.health.2024.100350</a>.
L. J. Vaickus, D. A. Kerr, J. M. Velez Torres, and J. Levy, “Artificial Intelligence Applications in Cytopathology,†Surgical Pathology Clinics, vol. 17, no. 3, pp. 521–531, Sep. 2024. <a href="https://doi.org/10.1016/j.path.2024.04.011">https://doi.org/10.1016/j.path.2024.04.011</a>.
A. Anggrawan, H. Hairani, and N. Azmi, “Prediksi Penjualan Produk Unilever Menggunakan Metode Regresi Linear †Jurnal Bumigora Information Technology (BITe), vol. 4, no. 2, pp. 123–132, Dec. 2022. <a href="https://doi.org/10.30812/bite.v4i2.2416">https://doi.org/10.30812/bite.v4i2.2416</a>.
A. Anggrawan, H. Hairani, and M. A. Candra, “Prediction of Electricity Usage with Back-propagation Neural Network,†International Journal of Engineering and Computer Science Applications (IJECSA), vol. 1, no. 1, pp. 9–18, Mar. 2022. <a href="https://doi.org/10.30812/ijecsa.v1i1.1722">https://doi.org/10.30812/ijecsa.v1i1.1722</a>.
R. Ramadhanti, H. Hairani, and M. Innuddin, “Electric Vehicle Sales-Prediction Application Using Backpropagation Algorithm Based on Web,†International Journal of Engineering and Computer Science Applications (IJECSA), vol. 2, no. 2, pp. 73–80, Sep. 2023. <a href="https://doi.org/10.30812/ijecsa.v2i2.3388">https://doi.org/10.30812/ijecsa.v2i2.3388</a>.
H. H. M. Hatta, F. M. Daud, and N. Mohamad, “An Application of Time Series ARIMA Forecasting Model for Predicting the Ringgit Malaysia-Dollar Exchange Rate,†Journal of Data Analysis, vol. 1, no. 1, pp. 42–48, Sep. 2018. <a href="https://doi.org/10.24815/jda.v1i1.11884">https://doi.org/10.24815/jda.v1i1.11884</a>.
M. Multiningsih, E. Siswanah, and M. Saleh, “Forecasting the Number of Ship Passengers with SARIMA Approach (A Case Study: Semayang Port, Balikpapan City),†JTAM (Jurnal Teori dan Aplikasi Matematika), vol. 6, no. 4, pp. 1060–1080, Oct. 2022. <a href="https://doi.org/10.31764/jtam.v6i4.10211">https://doi.org/10.31764/jtam.v6i4.10211</a>.
M. Ridwan, K. Sadik, and F. M. Afendi, “Comparison of ARIMA and GRU Models for High-Frequency Time Series Forecasting.†Scientific Journal of Informatics, vol. 10, no. 3, pp. 389–400, Aug. 2023. <a href="https://doi.org/10.15294/sji.v10i3.45965">https://doi.org/10.15294/sji.v10i3.45965</a>.
A. W. Saputra, A. P. Wibawa, U. Pujianto, A. B. P. Utama, and A. Nafalski, “LSTM-based Multivariate Time-Series Analysis: A Case of Journal Visitors Forecasting,†ILKOM Jurnal Ilmiah, vol. 14, no. 1, pp. 57–62, Apr. 2022, number: 1. <a href="https://doi.org/10.33096/ilkom.v14i1.1106.57-62">https://doi.org/10.33096/ilkom.v14i1.1106.57-62</a>.
K. F. Khufa and M. Murinto, “Prediksi Kasus Tingkat Depresi Mahasiswa Semester Akhir Menggunakan Regresi Linear Sederhana,†INTEK : Jurnal Informatika dan Teknologi Informasi, vol. 7, no. 1, pp. 1–6, May 2024. <a href="https://doi.org/10.37729/intek.v7i1.4978">https://doi.org/10.37729/intek.v7i1.4978</a>.
P. Purwadi, P. S. Ramadhan, and N. Safitri, “Penerapan Data Mining Untuk Mengestimasi Laju Pertumbuhan Penduduk Menggunakan Metode Regresi Linier Berganda Pada BPS Deli Serdang,†Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika dan Komputer), vol. 18, no. 1, pp. 55–61, Feb. 2019. <a href="https://doi.org/10.53513/jis.v18i1.104">https://doi.org/10.53513/jis.v18i1.104</a>.
R. N. Azizah, U. K. Nisak, and U. Indahyanti, “Analisis Jumlah Prediksi Penyebaran HIV/AIDS di Kabupaten Sidoarjo menggunakan Metode Multiple Linier Regression,†Physical Sciences, Life Science andEngineering, vol. 1, no. 1, pp. 1–11, Jan. 2024. <a href="https://doi.org/10.47134/pslse.v1i1.163">https://doi.org/10.47134/pslse.v1i1.163</a>.
N. S. Niko, A. Rahman, D. Marini Umi Atmaja, and A. Basri, “Prediksi Penyakit Diabetes Untuk Pencegahan Dini Dengan Metode Regresi Linear,†Bulletin of Information Technology (BIT), vol. 4, no. 3, pp. 313–219, Sep. 2023. <a href="https://doi.org/10.47065/bit.v4i3.739">https://doi.org/10.47065/bit.v4i3.739</a>.
T. A. Setiawan, A. Ilyas, and A. Arochman, “Komparasi Model Prediksi Penanganan Kasus Narkotika,†IC-Tech, vol. 17, no. 1, pp. 42–48, Apr. 2022. <a href="https://doi.org/10.47775/ictech.v17i1.239">https://doi.org/10.47775/ictech.v17i1.239</a>.
X. Chen, H. Zheng, H. Wang, and T. Yan, “Can machine learning algorithms perform better than multiple linear regression in predicting nitrogen excretion from lactating dairy cows,†Scientific Reports, vol. 12, no. 1, pp. 1–13, Jul. 2022. <a href="https://doi.org/10.1038/s41598-022-16490-y">https://doi.org/10.1038/s41598-022-16490-y</a>.
H. Kablay and V. Gumbo, “Comparison of Multiple Linear Regression and Neural Network Models in Bank Performance Prediction in Botswana,†Journal of Mathematics and Statistics, vol. 17, no. 1, pp. 88–95, Jan. 2021. <a href="https://doi.org/10.3844/jmssp.2021.88.95">https://doi.org/10.3844/jmssp.2021.88.95</a>.
M. Li and J. Wang, “An Empirical Comparison of Multiple Linear Regression and Artificial Neural Network for Concrete Dam Deformation Modelling,†Mathematical Problems in Engineering, vol. 2019, no. 1, pp. 1–13, Jan. 2019. <a href="https://doi.org/10.1155/2019/7620948">https://doi.org/10.1155/2019/7620948</a>.
</p>
Downloads
Published
Issue
Section
How to Cite
Most read articles by the same author(s)
- Anthony Anggrawan, Hairani Hairani, M. Ade Candra, Prediction of Electricity Usage with Back-propagation Neural Network , International Journal of Engineering and Computer Science Applications (IJECSA): Vol. 1 No. 1 (2022): March 2022
- Hairani Hairani, Lilik Nurhayati, Muhammad Innuddin, Web-Based Application for Toddler Nutrition Classification Using C4.5 Algorithm , International Journal of Engineering and Computer Science Applications (IJECSA): Vol. 1 No. 2 (2022): September 2022
- Christopher Michael Lauw, Hairani Hairani, Ilham Saifuddin, Juvinal Ximenes Guterres, Muhammad Maariful Huda, Mayadi Mayadi, Combination of Smote and Random Forest Methods for Lung Cancer Classification , International Journal of Engineering and Computer Science Applications (IJECSA): Vol. 2 No. 2 (2023): September 2023
- Ramadhanti Ramadhanti, Hairani Hairani, Muhammad Innuddin, Electric Vehicle Sales-Prediction Application Using Backpropagation Algorithm Based on Web , International Journal of Engineering and Computer Science Applications (IJECSA): Vol. 2 No. 2 (2023): September 2023
- I Nyoman Switrayana, Diki Ashadi, Hairani Hairani, Afrig Aminuddin, Sentiment Analysis and Topic Modeling of Kitabisa Applications using Support Vector Machine (SVM) and Smote-Tomek Links Methods , International Journal of Engineering and Computer Science Applications (IJECSA): Vol. 2 No. 2 (2023): September 2023
- Hairani Hairani, Juvinal Ximenes Guterres, Exploring Customer Purchasing Patterns: A Study Utilizing FP-Growth Algorithm on Supermarket Transaction Data , International Journal of Engineering and Computer Science Applications (IJECSA): Vol. 3 No. 1 (2024): March 2024
- Hairani Hairani, Mengas Janhasmadja, Abu Tholib, Juvinal Ximenes Guterres, Yuri Ariyanto, Thesis Topic Modeling Study: Latent Dirichlet Allocation (LDA) and Machine Learning Approach , International Journal of Engineering and Computer Science Applications (IJECSA): Vol. 3 No. 2 (2024): September 2024
- Dias Nabila Huda, Anthony Anggrawan, Hairani Hairani, Clustering Analysis of Umrah Pilgrim Data Based on the K-Medoid Method , International Journal of Engineering and Computer Science Applications (IJECSA): Vol. 3 No. 2 (2024): September 2024