Graduation Prediction System on Students Using C4.5 Algorithm
DOI:
https://doi.org/10.30812/matrik.v19i2.685Keywords:
C4.5 Algorithm, Data Mining, Student Graduation, PredictionAbstract
Bumigora University College there are several things that are not balanced between the entry and exit of students who have completed their studies. Students who enter in large numbers, but students who graduate on time below the specified standards. As result, there was a huge accumulation of students in each graduation period. One solution to overcome the problem above needs a data mining based system in monitoring or utilizing student development in predicting graduation using the C4.5 algorithm. The stages of this research began with problem analysis, data collection, data requirement analysis, data design, coding, and testing. The results of this study are the implementation of the C4.5 algorithm for predicting student graduation on time or not. The data used is the data of students who have graduated from 2010 to 2012. The level of acceptance generated using the confusion matrix is ​​93,103% accuracy using 163 training data and 29 testing data or 85% training data and 15% testing data. The results of research and testing that has been done, C4.5 algorithm is very suitable to be used in student graduation prediction.
Downloads
References
[2] A. Panoto, Y. R. W. Utami, and W. L. YS, “Penerapan Algoritma K-Nearest Neighbors Uuntuk Prediksi Kelulusan Mahasiswa Pada Stmik Sinar Nusantara Surakarta,†J. TIKomSiN, no. 2338–4018, pp. 27–31, 2017.
[3] Y. Yulia and N. Azwanti, “Penerapan Algoritma C4.5 Untuk Memprediksi Besarnya Penggunaan Listrik Rumah Tangga di Kota Batam,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 2, pp. 584–590, 2018, doi: 10.29207/resti.v2i2.503.
[4] R. H. Pambudi and B. D. Setiawan, “Penerapan Algoritma C4 . 5 Untuk Memprediksi Nilai Kelulusan Siswa Sekolah Menengah Berdasarkan Faktor Eksternal,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 7, pp. 2637–2643, 2018.
[5] E. Purnamasari, D. P. Rini, and Sukemi, “Prediction of the Student Graduation’s Level using C4.5 Decision Tree Algorithm,†in International Conference on Electrical Engineering and Computer Science (ICECOS) 2019, 2019, pp. 192–195, doi: 10.1109/icecos47637.2019.8984493.
[6] A. A. Supianto, A. Julisar Dwitama, and M. Hafis, “Decision Tree Usage for Student Graduation Classification: A Comparative Case Study in Faculty of Computer Science Brawijaya University,†in 3rd International Conference on Sustainable Information Engineering and Technology, SIET 2018 - Proceedings, 2018, pp. 308–311, doi: 10.1109/SIET.2018.8693158.
[7] E. Sutoyo and A. Almaarif, “Educational Data Mining untuk Prediksi Kelulusan Mahasiswa Menggunakan Algoritme Naïve Bayes Classifier,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 1, pp. 95–101, 2020, doi: 10.29207/RESTI.V4I1.1502.
[8] I. A. Nikmatun and I. Waspada, “Implementasi Data Mining untuk Klasifikasi Masa Studi Mahasiswa Menggunakan Algoritma K-Nearest Neighbor,†J. SIMETRIS, vol. 10, no. 2, pp. 421–432, 2019.
[9] A. Maesya and T. Hendiyanti, “Forecasting Student Graduation with Classification and Regression Tree (CART) Algorithm,†IOP Conf. Ser. Mater. Sci. Eng., vol. 621, no. 1, pp. 1–6, 2019, doi: 10.1088/1757-899X/621/1/012005.
[10] R. Puspita, S. Putri, I. Waspada, D. Ilmu, K. Informatika, and F. Sains, “Penerapan Algoritma C4 . 5 pada Aplikasi Prediksi Kelulusan Mahasiswa Prodi Informatika,†Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 4, no. 1, pp. 1–7, 2018.
[11] D. Devina, A. A. Supianto, and W. Purnomo, “Aplikasi Data Mining Menggunakan Algoritme C4 . 5 untuk Memprediksi Ketepatan Lulus Mahasiswa Berdasarkan Faktor Demografi,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 6, pp. 6044–6051, 2019.
[12] M. Ridwan, H. Suyono, and M. Sarosa, “Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier,†vol. 7, no. 1, pp. 59–64, 2013.
[13] S. Faisal, “Klasifikasi Data Minning Menggunakan Algoritma C4.5 Terhadap Kepuasan Pelanggan Sewa Kamera Cikarang,†J. Ilmu Komput. Teknol. Inf. ISSN, vol. 4, no. April, pp. 1–8, 2019.
[14] Rismayanti, “Implementasi Algoritma C4.5 Untuk Menentukan Penerima Beasiswa Di Stt Harapan Medan,†Media Infotama, vol. 12, no. 2, pp. 116–120, 2016.
[15] T. A. Kurniawan, “Pemodelan Use Case (Uml): Evaluasi Terhadap Beberapa Kesalahan Dalam Praktik,†J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 1, pp. 77–86, 2018, doi: 10.25126/jtiik.201851610.
[16] H. Hairani, K. E. Saputro, and S. Fadli, “K-means-SMOTE untuk menangani ketidakseimbangan kelas dalam klasifikasi penyakit diabetes dengan C4.5, SVM, dan naive Bayes,†Jurnal Teknologi dan Sistem Komputer, vol. 8, no. 2, pp. 89–93, Apr. 2020, doi: https://doi.org/10.14710/jtsiskom.8.2.2020.89-93.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Ahmat Adil, Bambang Krismono Triwijoyo, Sistem Informasi Geografis Pemetaan Jaringan Irigasi dan Embung di Lombok Tengah , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Muhammad Ibnu Choldun Rachmatullah, The Application of Repeated SMOTE for Multi Class Classification on Imbalanced Data , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Abdurraghib Segaf Suweleh, Dyah Susilowaty, Hairani Hairani, Khairan Marzuki, Penanganan Ketidak Seimbangan Kelas Menggunakan Pendekatan Level Data , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 1 (2020)
- Agung Teguh Wibowo Almais, Cahyo Crysdian, Khadijah Fahmi Hayati Holle, Akbar Roihan, Smart Assessment menggunakan Backpropagation Neural Network , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Arwin Datumaya Wahyudi Sumari, Fatiha Eros Perdana, Dwi Nugraheny, Sandra Lovrencic, Improving the User Interface and Experience of a Student PortalThrough the Eight Golden Rules , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Denny Indrajaya, Adi Setiawan, Bambang Susanto, Comparison of k-Nearest Neighbor and Naive Bayes Methods for SNP Data Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Firda Yunita Sari, Maharani sukma Kuntari, Hani Khaulasari, Winda Ari Yati, Comparison of Support Vector Machine Performance with Oversampling and Outlier Handling in Diabetic Disease Detection Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Ni Wayan Sumartini Saraswati, Ni Made Lisma Martarini, Extract Transform Loading Data Absensi STMIK STIKOM Indonesia Menggunakan Pentaho , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
- Susandri Susandri, Ahmad Zamsuri, Nurliana Nasution, Yoyon Efendi, Hiba Basim Alwan, The Mitigating Overfitting in Sentiment Analysis Insights from CNN-LSTM Hybrid Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Desi Vinsensia, Siskawati Amri, Jonhariono Sihotang, Hengki Tamando Sihotang, New Method for Identification and Response to Infectious Disease Patterns Based on Comprehensive Health Service Data , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Anthony Anggrawan, Analisis Deskriptif Hasil Belajar Pembelajaran Tatap Muka dan Pembelajaran Online Menurut Gaya Belajar Mahasiswa , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Lusiana Efrizoni, Sarjon Defit, Muhammad Tajuddin, Anthony Anggrawan, Komparasi Ekstraksi Fitur dalam Klasifikasi Teks Multilabel Menggunakan Algoritma Machine Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Lalu Ganda Rady Putra, Anthony Anggrawan, Pengelompokan Penerima Bantuan Sosial Masyarakat dengan Metode K-Means , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Anthony Anggrawan, Satuang Satuang, Mokhammad Nurkholis Abdillah, Sistem Pakar Diagnosis Penyakit Ayam Broiler Menggunakan Forward Chaining dan Certainty Factor , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 1 (2020)
- Anthony Anggrawan, Mayadi Mayadi, Christofer Satria, Menentukan Akurasi Tata Letak Barang dengan Menggunakan Algoritma Apriori dan Algoritma FP-Growth , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Anthony Anggrawan, Mayadi Mayadi, Application of KNN Machine Learning and Fuzzy C-Means to Diagnose Diabetes , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Dyah Susilowati, Hairani Hairani, Indah Puji Lestari, Khairan Marzuki, Lalu Zazuli Azhar Mardedi, Segmentasi Lokasi Promosi Penerimaan Mahasiswa Baru Menggunakan Metode RFM dan K-Means Clustering , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
- Muhamad Azwar, Sri Winarni Sofya, Riwayati Malika, Hairani Hairani, Juvinal Ximenes Guterres, Combination Forward Chaining and Certainty Factor Methods for Selecting the Best Herbs to Support Independent Health , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Bambang Krismono Triwijoyo, Ahmat Adil, Anthony Anggrawan, Convolutional Neural Network With Batch Normalization for Classification of Emotional Expressions Based on Facial Images , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Putu Tisna Putra, Anthony Anggrawan, Hairani Hairani, Comparison of Machine Learning Methods for Classifying User Satisfaction Opinions of the PeduliLindungi Application , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
.png)











