Klasterisasi Data Rekam Medis Pasien Menggunakan Metode K-Means Clustering di Rumah Sakit Anwar Medika Balong Bendo Sidoarjo
DOI:
https://doi.org/10.30812/matrik.v19i1.529Keywords:
K-Means clustering, SIMR, Data Mining, ITAbstract
The use of information management systems that are owned by hospitals is still limited to being used only for the operation of daily patient service transactions and making reports only. The use of SIMRS is not optimal, it should pile the data stored in the database server can be used to generate new information if we dig deeper with the IT approach. This study uses data mining techniques with K-Means clustering method to cluster the patient's medical record data. The results of this study produce column 4 clusters consisting of districts, diagnoses of diseases, age and sex.The results of this study produce column 4 clusters consisting of districts, diagnoses of diseases, age and sex. Cluster 1 produced many patients consisting of 79(15%) female patients, Cluster 2 produced many patients consisting of 214(50%) male patients. Likewise Cluster 3 produced 89(17%) female patients. people and cluster 4 produced many patients consisting of 152(28%) female patients.The grouping of patient medical record data produces new information about the pattern of grouping of disease spread in each district based on the patient's medical record data from Anwar Medika Hospital as much as 534 data with a completion time of 0.06 seconds
Downloads
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Bobby Poerwanto, Baso Ali, Implementasi Algoritma Fuzzy C-Means dalam Mengelompokkan Kecamatan di Tana Luwu Berdasarkan Produktifitas Hasil Perkebunan , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Sepyan Purnama Kristanto, Lutfi Hakim, Ekstraksi Informasi Destinasi Wisata Populer Jawa Timur Menggunakan Depth-First Crawling , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Taufik Hidayat, Mohammad Ridwan, Muhamad Fajrul Iqbal, Sukisno Sukisno, Robby Rizky, William Eric Manongga, Determining Toddler's Nutritional Status with Machine Learning Classification Analysis Approach , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- M Safii, Rika Setiana, Population Prediction Using Multiple Regression and Geometry Models Based on Demographic Data , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Dedi Setiadi, Yogi Isro Mukti, Electronic Tourism Using Decision Support Systems to Optimize the Trips , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Arief Herdiansah, Sistem Pendukung Keputusan Referensi Pemilihan Tujuan Jurusan Teknik di Perguruan Tinggi Bagi Siswa Kelas XII IPA Mengunakan Metode AHP , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
- Siti Ummi Masruroh, Andrew Fiade, Muhammad Ikhsan Tanggok, Rizka Amalia Putri, Luigi Ajeng Pratiwi, Convolutional Neural Network for Colorization of Black and White Photos , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Dewa Ayu Kadek Pramita, Ni Wayan Sumartini Saraswati, I Putu Dedy Sandana, Poria Pirozmand, I Kadek Agus Bisena, Optimizing Hotel Room Occupancy Prediction Using an Enhanced Linear Regression Algorithms , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Hiya Nalatissifa, Yudi Ramdhani, Sistem Penunjang Keputusan Menggunakan Metode Topsis untuk Menentukan Kelayakan Bantuan Rumah Tidak Layak Huni (RTLH) , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
- Darmansah Darmansah, Zulya Suhendro, Sistem Informasi Sekolah Pada Sekolah Dasar Negeri 21 Sungai Geringging Kabupaten Padang Pariaman Berbasis Web , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
You may also start an advanced similarity search for this article.