Identifikasi Ekstraksi Fitur untuk Gerakan Tangan dalam Bahasa Isyarat (SIBI) Menggunakan Sensor MYO Armband
DOI:
https://doi.org/10.30812/matrik.v19i1.510Keywords:
hand gesture, sign language, MYO Armband sensor, feature extraction, Moment Invariant MethodAbstract
Indonesian: Indonesian SIBI has been widely reviewed by researchers using different types of cameras and sensors. The ultimate goal is to produce a strong, fast and accurate movement recognition process. One that supports talk of movement using sensors on the MYO Armband tool. This paper explains how to use raw data generated from the MYO Armband sensor and extract integration so that it can be used to facilitate complete hand, arm and combination movements in the SIBI sign language dictionary. MYO armband uses five sensors: accelerometer, gyroscope, orientation, euler-orientation and EMG. Each sensor produces data that is different in scale and size. This requires a process to make the data uniform. This study uses the min-max method to normalize any data on the MYO Armband sensor and the Moment Invariant method to extract the vector features of hand movements. Testing is done using sign language Movement statistics both dynamic signals. Testing is done using cross validation.
Downloads
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Ardafa Ihromi, Yuda Syahidin, Erix Gunawan, Neneng Yuniarty, E-Mortality using Agile Scrum Method to Improve Information Services Effectiveness , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Jusmita Weriza, Ismail Husein, Noranizamardia Noranizamardia, M Fakhariza, Khairan Marzuki, Development of OnlineWeb-Based New Student Graduation Application in Junior High School , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Angelina Ervina Jeanette Egeten, Siska A. Damanik, Ika Agustina, Marcelina Panggabean, Perancangan Sistem Informasi Posyandu Berbasis Web Pada Yayasan Kalyanamitra Di Jakarta Timur Untuk Mendukung Program Bidang Pendampingan Komunitas , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Rahman Rahman, Teguh Iman Hermanto, Meriska Defriani, Hyperparamaters Fine Tuning for Bidirectional Long Short Term Memory on Food Delivery , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Andris Faesal, Aziz Muslim, Aditya Hastami Ruger, Kusrini Kusrini, Sentimen Analisis pada Data Tweet Pengguna Twitter Terhadap Produk Penjualan Toko Online Menggunakan Metode K-Means , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
- Nenny Anggraini, Zulkifli Zulkifli, Nashrul Hakiem, Development of Smart Charity Box Monitoring Robot in Mosque with Internet of Things and Firebase using Raspberry Pi , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Angelina Ervina Jeanette Egeten, PENGARUH PEMBELAJARAN E-LEARNING DAN KEBIASAAN BELAJAR TERHADAP PENINGKATAN KOMPETENSI MAHASISWA PASCASARJANA PADA UNIVERSITAS BINA NUSANTARA , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 16 No. 2 (2017)
- Melinda Melinda, Zharifah Muthiah, Fitri Arnia, Elizar Elizar, Muhammad Irhmasyah, Image Data Acquisition and Classification of Vannamei Shrimp Cultivation Results Based on Deep Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Moh.Erwin Indrawan, Ahmat Adil, IMPLEMENTASI RESTFUL WEB SERVICE ONE CHIP MULTI-CLIENT UNTUK MENGOPTIMALKAN PENJUALAN PULSA ALL OPERATOR , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 15 No. 2 (2016)
- Edi Ismanto, Januar Al Amien, Vitriani Vitriani, A Comparison of Enhanced Ensemble Learning Techniques for Internet of Things Network Attack Detection , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
You may also start an advanced similarity search for this article.