Comparative Evaluation of Data Clustering Accuracy through Integration of Dimensionality Reduction and Distance Metric
DOI:
https://doi.org/10.30812/matrik.v24i3.5057Keywords:
Clustering, Cluster Evaluation, Distance Metric, K-Means, Principal Component AnalysisAbstract
The primary issue in clustering analysis of multivariate data is the low accuracy resulting from a mismatch between the Distance Metric used and the characteristics of the data. This study aims to comprehensively evaluate the effect of eight Distance Metric in the KMeans algorithm integrated with the Principal Component Analysis (PCA)dimension reduction technique. The analysis process was conducted by transforming the data into two principal components using PCA, then applying K-Means to each Distance Metric. Performance evaluation was conducted based on five internal metrics: Silhouette Score, Davies-Bouldin Index, Sum of Squared Errors, Calinski-Harabasz Index, and Dunn Index. The results show that the Bray-Curtis formula provides the best performance, with a Silhouette Score of 0.4291 and SSE of 30.3673. This is followed by Euclidean and Minkowski, which yield the highest Calinski-Harabasz Index value of 2239.85 and Dunn Index of 0.0108, respectively. In contrast, Hamming’s formula yielded the lowest performance across all metrics, with a Silhouette Score of 0.0000 and an SSE of 1996.00. The ANOVA test revealed significant differences between the Distance Metric, with a p-value of ¡0.000 for all metrics, which was further supported by the Tukey HSD follow-up test results. The implications of these findings confirm the importance of selecting an appropriate Distance Metric in the clustering process to ensure the validity, efficiency, and interpretability of multivariate data analysis results.
Downloads
References
[1] C.-E. Ben Ncir, A. Hamza, andW. Bouaguel, “Parallel and scalable Dunn Index for the validation of big data clusters,” Parallel
Computing, vol. 102, p. 102751, 2021, https://doi.org/10.1016/j.parco.2021.102751.
[2] S. Suboh, I. A. Aziz, S. M. Shaharudin, S. A. Ismail, and H. Mahdin, “A Systematic Review of Anomaly Detection within High
Dimensional and Multivariate Data,” vol. 7, no. March, 2023, https://doi.org/10.30630/joiv.7.1.1297.
[3] J. Yin, S. Sun, L.Wei, and P.Wang, “Discriminatively Fuzzy Multi-View K-means Clustering with Local Structure Preserving,”
vol. 38, no. 5, pp. 16 478–16 485, 2024, https://doi.org/10.1609/aaai.v38i15.29585.
[4] M. Zubair, M. D. A. Iqbal, A. Shil, M. J. M. Chowdhury, M. A. Moni, and I. H. Sarker, “An improved K-means clustering
algorithm towards an efficient data-driven modeling,” Annals of Data Science, vol. 11, no. 5, pp. 1525–1544, 2024, https:
//doi.org/10.1007/s40745-022-00428-2.
[5] J. Zhao, G. Wang, J.-S. Pan, T. Fan, and I. Lee, “Density peaks clustering algorithm based on fuzzy and weighted shared
neighbor for uneven density datasets,” Pattern Recognition, vol. 139, p. 109406, July, 2023, https://doi.org/10.1016/j.patcog.
2023.109406.
[6] O. Dorabiala, A. Y. Aravkin, and J. N. Kutz, “Ensemble principal component analysis,” IEEE Access, vol. 12, pp. 6663–6671,
January, 2024, https://doi.org/10.1109/ACCESS.2024.3350984.
[7] F. Zou and G. G. Yen, “Dynamic multiobjective optimization with varying number of objectives assisted by dynamic principal
component analysis,” Information Sciences, vol. 665, p. 120398, April, 2024, https://doi.org/10.1016/j.ins.2024.120398.
[8] G. T. Reddy, M. P. K. Reddy, K. Lakshmanna, R. Kaluri, D. S. Rajput, G. Srivastava, and T. Baker, “Analysis of Dimensionality
Reduction Techniques on Big Data,” IEEE Access, vol. 8, no. March, pp. 54 776–54 788, 2020, https://doi.org/10.1109/
ACCESS.2020.2980942.
[9] G. K. Patel, V. K. Dabhi, and H. B. Prajapati, “Clustering Using a Combination of Particle Swarm Optimization and K-means,”
vol. 26, no. 3, pp. 457–469, May, 2017, https://doi.org/10.1515/jisys-2015-0099.
[10] K. Yu, S. Fang, and Y. Zhao, “Heavy metal Hg stress detection in tobacco plant using hyperspectral sensing and data-driven
machine learning methods,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 245, p. 118917, 2021,
https://doi.org/10.1016/j.saa.2020.118917.
[11] C. E. Coombes, X. Liu, Z. B. Abrams, K. R. Coombes, and G. Brock, “Simulation-derived best practices for clustering clinical
data,” Journal of Biomedical Informatics, vol. 118, p. 103788, June, 2021, https://doi.org/10.1016/j.jbi.2021.103788.
[12] M. Tripathi and S. K. Singal, “Allocation of weights using factor analysis for development of a novel water quality index,”
Ecotoxicology and Environmental Safety, vol. 183, p. 109510, November, 2019, https://doi.org/10.1016/j.ecoenv.2019.109510.
[13] A. C. P. Fernandes, L. F. S. Fernandes, R. M. V. Cortes, and F. A. L. Pacheco, “The role of landscape configuration, season,
and distance from contaminant sources on the degradation of stream water quality in urban catchments,” Water (Switzerland),
vol. 11, no. 10, 2019, https://doi.org/10.3390/w11102025.
[14] P. M. Hasugian, B. Sinaga, J. Manurung, and S. A. Al Hashim, “Best Cluster Optimization with Combination of K-Means
Algorithm And Elbow Method Towards Rice Production Status Determination,” International Journal of Artificial Intelligence
Research, vol. 5, no. 1, pp. 102–110, 2021, https://doi.org/10.29099/ijair.v6i1.232.
[15] S. Sumathi and H. G. Gunaseelan, “A Review of Data and Document Clustering pertaining to various Distance Measures,”
Salud, Ciencia y Tecnolog´ıa, 2022, https://doi.org/10.56294/saludcyt2022194.
[16] N. Faris, A. Sahi, M. Diykh, S. Abdulla, and S. Siuly, “Enhanced Polycystic Ovary Syndrome Diagnosis Model Leveraging
a K-means Based Genetic Algorithm and Ensemble Approach,” Intelligence-Based Medicine, vol. 11, p. 100253, 2025, https:
//doi.org/10.1016/j.ibmed.2025.100253.
[17] R. Perera, M. C. Huerta, C. Barris, and M. Baena, “Clustering classifier of FRP strengthened concrete beams using superpixels
and principal component analysis,” Construction and Building Materials, vol. 453, no. June, p. 139019, 2024, https://doi.org/
10.1016/j.conbuildmat.2024.139019.
[18] A. K. Abdalameer, M. Alswaitti, A. A. Alsudani, and N. A. M. Isa, “A new validity clustering index-based on finding new
centroid positions using the mean of clustered data to determine the optimum number of clusters,” Expert Systems with Applications,
vol. 191, p. 116329, April, 2022, https://doi.org/10.1016/j.eswa.2021.116329.
[19] Q. Zhang, X. Zhang, J. Yang, M. Sun, and T. Cao, “Introducing Euclidean distance optimization into Softmax loss under neural
collapse,” Pattern Recognition, vol. 162, no. November 2024, p. 111400, 2025, https://doi.org/10.1016/j.patcog.2025.111400.
[20] Y. Yuan, J.Wang,W. Li, K.Wang, H. Rao, and J. Xu, “Fast supervoxel segmentation of connectivity median simulation based on
Manhattan distance,” International Journal of Applied Earth Observation and Geoinformation, vol. 133, p. 104108, September,
2024, https://doi.org/10.1016/j.jag.2024.104108.
[21] S. Liaquat, M. F. Zia, O. Saleem, Z. Asif, and M. Benbouzid, “Performance analysis of distance metrics on the exploitation
properties and convergence behaviour of the conventional firefly algorithm[Formula presented],” Applied Soft Computing, vol.
126, p. 109255, September, 2022, https://doi.org/10.1016/j.asoc.2022.109255.
[22] N. Krivulin, “Algebraic solution of minimax single-facility constrained location problems with Chebyshev and rectilinear distances,”
Journal of Logical and Algebraic Methods in Programming, vol. 115, p. 100578, October, 2020, https://doi.org/10.
1016/j.jlamp.2020.100578.
[23] A. Ghosh, A. K. Ghosh, R. SahaRay, and S. Sarkar, “Classification Using Global and Local Mahalanobis Distances,” vol. 207,
no. February 2024, 2024, https://doi.org/10.1016/j.jmva.2025.105417.
[24] P. M. Hasugian, H. Mawengkang, P. Sihombing, and S. Efendi, “Development of distance formulation for high-dimensional data
visualization in multidimensional scaling,” Bulletin of Electrical Engineering and Informatics, vol. 14, no. 2, pp. 1178–1189,
2025, https://doi.org/10.11591/eei.v14i2.8738.
[25] W. Zhao, L. Yang, C. Dang, R. Rocchetta, M. Valdebenito, and D. Moens, “Enriching stochastic model updating metrics: An
efficient Bayesian approach using Bray-Curtis distance and an adaptive binning algorithm,” Mechanical Systems and Signal
Processing, vol. 171, no. September 2021, p. 108889, 2022, https://doi.org/10.1016/j.ymssp.2022.108889.
[26] P. Agarwalla and S. Mukhopadhyay, “Gene expression selection for cancer classification using intelligent collaborative filtering
and hamming distance guided multi-objective swarm optimization,” Applied Soft Computing, vol. 170, no. November 2024, p.
112654, 2025, https://doi.org/10.1016/j.asoc.2024.112654.
[27] J. Wu, J. Chen, H. Xiong, and M. Xie, “External validation measures for K-means clustering: A data distribution perspective,”
Expert Systems with Applications, vol. 36, no. 3, Part 2, pp. 6050–6061, 2009, https://doi.org/10.1016/j.eswa.2008.06.093.
[28] A. Arunkumar, A. Pinceti, L. Sankar, and C. Bryan, “PMU Tracker: A Visualization Platform for Epicentric Event Propagation
Analysis in the Power Grid,” IEEE Transactions on Visualization and Computer Graphics, vol. 29, no. 1, pp. 1081–1090, jan
2023, https://doi.org/10.1109/TVCG.2022.3209380.
[29] I. K. Khan, H. Daud, N. Zainuddin, and R. Sokkalingam, “Standardizing reference data in gap statistic for selection optimal
number of cluster in K-means algorithm,” Alexandria Engineering Journal, vol. 118, no. January, pp. 246–260, 2025, https:
//doi.org/10.1016/j.aej.2025.01.034.
[30] M. Raeisi and A. B. Sesay, “A Distance Metric for Uneven Clusters of Unsupervised K-Means Clustering Algorithm,” IEEE
Access, vol. 10, no. August, pp. 86 286–86 297, 2022, https://doi.org/10.1109/ACCESS.2022.3198992.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Paska Marto Hasugian, Devy Mathelinea, Siska Simamora, Pandi Barita Nauli Simangunsong

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
How to Cite
Similar Articles
- Putu Tisna Putra, Anthony Anggrawan, Hairani Hairani, Comparison of Machine Learning Methods for Classifying User Satisfaction Opinions of the PeduliLindungi Application , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Budi Sumanto, Salima Nurrahma, Comparison of Random Forest Support Vector Machine and Passive Aggressive Models on E-nose-Based Aromatic Rice Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Yuniansyah Yuniansyah, Andri Saputra, PENGEMBANGAN MULTIMEDIA PEMBELAJARAN UNTUK MATAKULIAH GRAFIK KOMPUTER MENGGUNAKAN METODE ADDIE , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 17 No. 1 (2017)
- Gibran Satya Nugraha, Hairani Hairani, Aplikasi Pemetaan Kualitas Pendidikan di Indonesia Menggunakan Metode K-Means , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 17 No. 2 (2018)
- Frans Mikael Sinaga, Sio Jurnalis Pipin, Sunaryo Winardi, Karina Mannita Tarigan, Ananda Putra Brahmana, Analyzing Sentiment with Self-Organizing Map and Long Short-Term Memory Algorithms , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Inna Novianty, Walidatush Sholihah, Yudawan Aditama, Aplikasi Virtual Reality Atom Kimia di Seamolec , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
- Wahyu Styo Pratama, Didik Dwi Prasetya, Triyanna Widyaningtyas, Muhammad Zaki Wiryawan, Lalu Ganda Rady Putra, Tsukasa Hirashima, Performance Evaluation of Artificial Intelligence Models for Classification in Concept Map Quality Assessment , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Hepatika Zidny Ilmadina, Muhammad Naufal, Dega Surono Wibowo, Drowsiness Detection Based on Yawning Using Modified Pre-trained Model MobileNetV2 and ResNet50 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Tugiman Tugiman, Herman Herman, Anton Yudhana, The UTAUT Model for Measuring Acceptance of the Application of the Patient Registration System , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Raisul Azhar, ANALISA PERBANDINGAN PENERAPAN PBR DAN NON PBR PADA PROTOCOL OSPF UNTUK KONEKSI INTERNET , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 15 No. 1 (2015)
You may also start an advanced similarity search for this article.
.png)











