Assessing the Semantic Alignment in Multilingual Student-TeacherConcept Maps Using mBERT

Authors

  • Nadindra Dwi Ariyanta Universitas Negeri Malang, Malang, Indonesia
  • Didik Dwi Prasetya Universitas Negeri Malang, Malang, Indonesia
  • Ilham Ari Elbaith Zaeni Universitas Negeri Malang, Malang, Indonesia
  • Tsukasa Hirashima Hiroshima University, Hiroshima, Japan
  • Reo Wicaksono Universitas Negeri Malang, Malang, Indonesia

DOI:

https://doi.org/10.30812/matrik.v25i1.5046

Keywords:

Concept Map, mBert, Multilingual, Open-ended, Semantic Similarity, TF-IDF

Abstract

This study examines the effectiveness of mBERT (Multilingual Bidirectional Encoder Representations from Transformers) in assessing semantic alignment between student and teacher concept maps in multilingual educational contexts, comparing its performance with TF-IDF. Using datasets in both Indonesian and English, the study demonstrates that mBERT outperforms TF-IDF in capturing complex
semantic relationships, achieving 96% accuracy, 96% precision, 100% recall, and a 98% F1 score in the Indonesian dataset. In contrast, TF-IDF achieved higher precision (73%) and accuracy (79%) in the English dataset, where mBERT recorded 54% accuracy, 47% precision, but 90% recall. Semantic alignment was measured using cosine similarity to calculate the cosine of the angle between vectors
representing textual embeddings generated by both models. This method facilitates cross-linguistic semantic comparison, overcoming challenges related to word frequency and syntactic variations. While mBERT’s computational demands and the study’s limited linguistic scope suggest room for improvement, the findings highlight the potential for hybrid models and emphasize the transformative impact of AI-driven tools, such as mBERT, in fostering inclusive and effective multilingual education.

Downloads

Download data is not yet available.

References

[1] D. D. Prasetya, T. Widiyaningtyas, and T. Hirashima, “Interrelatedness patterns of knowledge representation in extension concept

mapping,” vol. 20, p. 009, May,2024, https://doi.org/10.58459/rptel.2025.20009.

[2] M. Konu KadiRhanogullari, “The Effect of Teaching with Concept Maps on Academic Success in Biology Teaching: A Meta-

Analysis Study,” no. 58, pp. 2781–2796, December, 2023, https://doi.org/10.53444/deubefd.1324169.

[3] C. G. M. Fine and E. M. Furtak, “A framework for science classroom assessment task design for emergent bilingual learners,”

vol. 104, no. 3, pp. 393–420, May, 2020, https://doi.org/10.1002/sce.21565.

[4] D. D. Prasetya, A. Pinandito, Y. Hayashi, and T. Hirashima, “Analysis of quality of knowledge structure and students’ perceptions

in extension concept mapping,” vol. 17, no. 1, p. 14, December, 2022, https://doi.org/10.1186/s41039-022-00189-9.

[5] J. M. Goodrich, L. Thayer, and S. Leiva, “Evaluating Achievement Gaps Between Monolingual and Multilingual Students,”

vol. 50, no. 7, pp. 429–441, October, 2021, https://doi.org/10.3102/0013189X21999043.

[6] S. Bhatia, S. Bhatia, and I. Ahmed, “AutomatedWaterloo Rubric for Concept Map Grading,” vol. 9, pp. 148 590–148 598, 2021,

https://doi.org/10.1109/ACCESS.2021.3124672.

[7] J. Nordmeyer, “From Testing to Teaching: Equity for Multilingual Learners in International Schools,” vol. 125, no. 7–8, pp.

247–275, August, 2023, https://doi.org/10.1177/01614681231194413.

[8] J. Mancilla-Martinez, J. K. Hwang, and M. H. Oh, “Assessment Selection for Multilingual Learners’ Reading Development,”

vol. 75, no. 3, pp. 351–362, November, 2021, https://doi.org/10.1002/trtr.2053.

[9] M. E. Flognfeldt, D. Tsagari, D. ˇ Surkalovi´c, and T. Tishakov, “The practice of assessing Norwegian and English language

proficiency in multilingual elementary school classrooms in Norway,” vol. 17, no. 5, pp. 519–540, October, 2020, https://doi.

org/10.1080/15434303.2020.1827409.

[10] M. Aparici, E. Rosado, and L. Tolchinsky, “Multilingual use assessment questionnaire: A proposal for assessing language and

literacy experience,” vol. 9, p. 1394727, May, 2024, https://doi.org/10.3389/fcomm.2024.1394727.

[11] N. Donmez Usta, E. ultay, and N. ultay, “Reading the Concept Map of Physics Teacher Candidates: A Case of Light,” vol. 31,

no. 1, pp. 14–21, March, 2020, https://doi.org/10.33828/sei.v31.i1.2.

[12] N. Fauziah, N. Izzati, and H. Handoko, “Development of Cooperative Integrated Reading and Composition Learning Model with

Mind Mapping Method to Improve Students’ Understanding of Mathematical Concepts,” vol. 1, no. 3, pp. 117–130, November,

2022, https://doi.org/10.58421/gehu.v1i3.27.

[13] H. L. Blake, “Intelligibility Enhancement via Telepractice During COVID-19 Restrictions,” vol. 5, no. 6, pp. 1797–1800,

December, 2020, https://doi.org/10.1044/2020 PERSP-20-00133.

[14] A. L. Ferrell, L. Soltero-Gonz´alez, and S. Kamioka, “Beyond English centrality: Integrating expansive conceptions of language

for literacy programming into IEPs,” vol. 9, p. 1347503, May, 2024, https://doi.org/10.3389/feduc.2024.1347503.

[15] D. Colla, E. Mensa, and D. P. Radicioni, “LessLex: Linking Multilingual Embeddings to SenSe Representations of LEXical

Items,” vol. 46, no. 2, pp. 289–333, June, 2020, https://doi.org/10.1162/coli a 00375.

[16] J. Heuzeroth and A. Budke, “The Effects of Multilinguality on the Development of Causal Speech Acts in the Geography

Classroom,” vol. 10, no. 11, p. 299, October, 2020, https://doi.org/10.3390/educsci10110299.

[17] F. A. S. Laily, D. D. Prasetya, A. N. Handayani, and T. Hirashima, “Revealing Interaction Patterns in Concept Map Construction

Using Deep Learning and Machine Learning Models,” vol. 24, no. 2, pp. 207–218, Februari, 2025, https://doi.org/10.30812/

matrik.v24i2.4641.

[18] S. Qin, L. Orchakova, Z.-Y. Liu, Y. Smirnova, and E. Tokareva, “Using the Learning Management System ”Modular Object-

Oriented Dynamic Learning Environment” in Multilingual Education,” vol. 17, no. 03, pp. 173–191, Februari, 2022, https:

//doi.org/10.3991/ijet.v17i03.25851.

[19] J. O. Uguru, “A Lexico-phonetic Comparison of Olukumi and Lukumi: A Procedure for Developing a Multilingual Dictionary,”

vol. 31, no. 1, May, 2021, https://doi.org/10.5788/31-1-1643.

[20] R. A. J. R. Peixoto, “Political Boundaries in Language Policies: A Discussion on Institutional Settings,” vol. 24, pp. e–1982–

4017–24–17, 2024, https://doi.org/10.1590/1982-4017-24-17.

[21] A. I. Anisimova, N. A. Safonova, M. Y. Dobrushyna, N. O. Lysenko, and I. H. Bezrodnykh, “Verbalization of the concept

language policy: Online research,” vol. 5, no. S4, pp. 1301–1311, November, 2021, https://doi.org/10.21744/lingcure.v5nS4.

1779.

[22] M. Perquin, S. Viswanathan, M. Vaillant, O. Risius, L. Huiart, J.-C. Schmit, N. J. Diederich, G. R. Fink, and J. Kukolja, “An

individualized functional magnetic resonance imaging protocol to assess semantic congruency effects on episodic memory in

an aging multilingual population,” vol. 14, p. 873376, July, 2022, https://doi.org/10.3389/fnagi.2022.873376.

[23] J. M. Giesinger, F. L. Loth, N. K. Aaronson, J. I. Arraras, G. Caocci, F. Efficace, M. Groenvold, M. Van Leeuwen, M. A.

Petersen, J. Ramage, K. A. Tomaszewski, T. Young, and B. Holzner, “Thresholds for clinical importance were established to

improve interpretation of the EORTC QLQ-C30 in clinical practice and research,” vol. 118, pp. 1–8, Februari, 2020, https:

//doi.org/10.1016/j.jclinepi.2019.10.003.

[24] K. Ro, J. Y. Kim, H. Park, B. H. Cho, I. Y. Kim, S. B. Shim, I. Y. Choi, and J. C. Yoo, “Deep-learning framework and

computer assisted fatty infiltration analysis for the supraspinatus muscle in MRI,” vol. 11, no. 1, p. 15065, July, 2021, https:

//doi.org/10.1038/s41598-021-93026-w.

[25] B. A. Polascik, J. Peck, N. Cepeda, S. Lyman, and D. Ling, “Reporting Clinical Significance in Hip Arthroscopy: Where Are

We Now?” vol. 16, pp. 527–533, December, 2020, https://doi.org/10.1007/s11420-020-09759-3.

[26] R. A. Binder, G. F. Fujimori, C. S. Forconi, G. W. Reed, L. S. Silva, P. S. Lakshmi, A. Higgins, L. Cincotta, P. Dutta, M.-

C. Salive, V. Mangolds, O. Anya, J. M. Calvo Calle, T. Nixon, Q. Tang, M. Wessolossky, Y. Wang, D. A. Ritacco, C. S.

Bly, S. Fischinger, C. Atyeo, P. O. Oluoch, B. Odwar, J. A. Bailey, A. Maldonado-Contreras, J. P. Haran, A. G. Schmidt,

L. Cavacini, G. Alter, and A. M. Moormann, “SARS-CoV-2 Serosurveys: How Antigen, Isotype and Threshold Choices Affect

the Outcome,” vol. 227, no. 3, pp. 371–380, Februari, 2023, https://doi.org/10.1093/infdis/jiac431.

[27] M. Franceschini, A. Boffa, E. Pignotti, L. Andriolo, S. Zaffagnini, and G. Filardo, “The Minimal Clinically Important Difference

Changes Greatly Based on the Different Calculation Methods,” vol. 51, no. 4, pp. 1067–1073, March, 2023, https://doi.org/10.

1177/03635465231152484.

[28] J. Bordon, “The Importance of Cycle Threshold Values in the Evaluation of Patients with Persistent Positive PCR for SARSCoV-

2: Case Study and Brief Review,” vol. 4, no. 1, pp. 1–5, 2020, https://doi.org/10.18297/jri/vol4/iss1/54.

[29] J. Bullard, K. Dust, D. Funk, J. E. Strong, D. Alexander, L. Garnett, C. Boodman, A. Bello, A. Hedley, Z. Schiffman, K. Doan,

N. Bastien, Y. Li, P. G. Van Caeseele, and G. Poliquin, “Predicting Infectious Severe Acute Respiratory Syndrome Coronavirus

2 From Diagnostic Samples,” vol. 71, no. 10, pp. 2663–2666, December, 2020, https://doi.org/10.1093/cid/ciaa638.

[30] S. Jayatilake, J. M. Bunker, A. Bhaskar, and M. Miska, “Time–space analysis to evaluate cell-based quality of service in bus

rapid transit station platforms through passenger-specific area,” vol. 13, no. 2, pp. 395–427, June, 2021, https://doi.org/10.1007/

s12469-021-00267-z.

[31] M. F. Bonner and R. A. Epstein, “Object representations in the human brain reflect the co-occurrence statistics of vision and

language,” vol. 12, no. 1, p. 4081, Februari, 2021, https://doi.org/10.1038/s41467-021-24368-2.

[32] C. Qu, M. F. Bonner, N. K. DeWind, and E. M. Brannon, “Contextual coherence increases perceived numerosity independent

of semantic content.” vol. 153, no. 8, pp. 2028–2042, August, 2024, https://doi.org/10.1037/xge0001595.

[33] M. C. Iordan, T. Giallanza, C. T. Ellis, N. M. Beckage, and J. D. Cohen, “Context Matters: Recovering Human Semantic

Structure from Machine Learning Analysis of Large-Scale Text Corpora,” vol. 46, no. 2, p. e13085, Februari, 2022, https:

//doi.org/10.1111/cogs.13085.

[34] B. Cao and J. Liu, “Combining bidirectional long short-term memory and self-attention mechanism for code search,” vol. 35,

no. 10, p. e7662, May, 2023, https://doi.org/10.1002/cpe.7662.

[35] R. Richie and S. Bhatia, “Similarity Judgment Within and Across Categories: A Comprehensive Model Comparison,” vol. 45,

no. 8, p. e13030, August, 2021, https://doi.org/10.1111/cogs.13030.

[36] D. Rose and P. Bex, “The Linguistic Analysis of Scene Semantics: LASS,” vol. 52, no. 6, pp. 2349–2371, December, 2020,

https://doi.org/10.3758/s13428-020-01390-8.

[37] J. C. Yang, “The prediction and analysis of heart disease using XGBoost algorithm,” vol. 41, no. 1, pp. 61–68, Februari, 2024,

https://doi.org/10.54254/2755-2721/41/20230711.

[38] L. Xu, S. Liu, S. Wang, D. Sun, and N. Li, “Word’s Predictability Can Modulate Semantic Preview Effect in High-Constraint

Sentences,” vol. 13, p. 849351, March, 2022, https://doi.org/10.3389/fpsyg.2022.849351.

[39] A. Onan and H. Alhumyani, “Contextual Hypergraph Networks for Enhanced Extractive Summarization: Introducing Multi-

Element Contextual Hypergraph Extractive Summarizer (MCHES),” vol. 14, no. 11, p. 4671, May, 2024, https://doi.org/10.

3390/app14114671.

[40] Y. Zhu, W. Zheng, and H. Tang, “Interactive Dual Attention Network for Text Sentiment Classification,” vol. 2020, pp. 1–11,

March, 2020, https://doi.org/10.1155/2020/8858717.

[41] B. Tang, J. Wang, H. Qiu, J. Yu, Z. Yu, and S. Liu, “Attack Behavior Extraction Based on Heterogeneous Cyberthreat Intelligence

and Graph Convolutional Networks,” vol. 74, no. 1, pp. 235–252, 2023, https://doi.org/10.32604/cmc.2023.029135.

[42] N. H. Hameed, A. M. Alimi, and A. T. Sadiq, “Short Text Semantic Similarity Measurement Approach Based on Semantic

Network,” vol. 19, p. 1581, May, 2022, https://doi.org/10.21123/bsj.2022.7255.

[43] W. Pasisingi, A. Mariana, and D. Husain, “A Semantic Analysis on Maroon 5 Songs,” vol. 2, no. 1, August, 2022, https:

//doi.org/10.30984/jeltis.v2i1.1948.

[44] L. Ding, H. Tang, and L. Bruzzone, “LANet: Local Attention Embedding to Improve the Semantic Segmentation of Remote

Sensing Images,” vol. 59, no. 1, pp. 426–435, Januari, 2021, https://doi.org/10.1109/TGRS.2020.2994150.

[45] W. Ma, Y. Wu, F. Cen, and G. Wang, “MDFN: Multi-scale deep feature learning network for object detection,” vol. 100, p.

107149, April, 2020, https://doi.org/10.1016/j.patcog.2019.107149.

Downloads

Published

2025-11-21

Issue

Section

Articles

How to Cite

[1]
N. D. Ariyanta, D. D. Prasetya, I. A. Elbaith Zaeni, T. Hirashima, and R. Wicaksono, “Assessing the Semantic Alignment in Multilingual Student-TeacherConcept Maps Using mBERT”, MATRIK, vol. 25, no. 1, pp. 113–126, Nov. 2025, doi: 10.30812/matrik.v25i1.5046.

Similar Articles

1-10 of 56

You may also start an advanced similarity search for this article.