Implementasi Algoritma Long Short-Term Memory (LSTM) Untuk Mendeteksi Ujaran Kebencian (Hate Speech) Pada Kasus Pilpres 2019
DOI:
https://doi.org/10.30812/matrik.v19i1.495Keywords:
Deep Learning, Long Short Term Memory, Hate Speech, RNNAbstract
Researches involving Artificial Neural Network (ANN) or its derivative have been published all around the world, spesifically to solve data mining problem, classification, clusterinf, or detection problems. Recurrent Neural Network is a class of ANN with Long Short Term Memory (LSTM) as its one of the architecture that commonly used in deep learning problems. On this paper, we use LSTM to detect hate speech on social media related with Indonesia President Election on 2019. There are several steps on this research, we start with literature study, data collection, data preprocessing, training step, and testing step. The dataset consist of 950 sentences, while the testing data consist of 190 comments on Facebook. The best model performance was reached with recall value 0.7021, which menas that from the whole relevant instances on the testing data, 70.21% were categorized as relevant, on this case as hate speech (HS). The other performance parameter value as in accuracy and precision still quite low due to the testing data that comes directly from social media which highly possible consist of inconsistent choises of words, informal words, or contains grammatically error sentences.
Downloads
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Ahmad Naufal Labiib Nabhaan, Rakandhiya Daanii Rachmanto, Arief Setyanto, Characterizing Hardware Utilization on Edge Devices when Inferring Compressed Deep Learning Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Jelita Asian, Dimas Erlangga, Media Ayu, Data Exfiltration Anomaly Detection on Enterprise Networks using Deep Packet Inspection , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Munirul Ula, Veri Ilhadi, Zailani Mohamed Sidek, Comparing Long Short-Term Memory and Random Forest Accuracy for Bitcoin Price Forecasting , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Faisal Reza Pradhana, Ilham Mufandi, Aziz Musthafa, Dian Afif Arifah, Khairul Munzilin Al Kahfi, Implementation of Conversational Artificial Intelligence in a3-Dimensional Game onWaste Impact , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Yuniar Farida, Afanin Hamidah, Silvia Kartika Sari, Lutfi Hakim, Modeling the Farmer Exchange Rate in Indonesia Using the Vector Error Correction Model Method , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Melinda Melinda, Zharifah Muthiah, Fitri Arnia, Elizar Elizar, Muhammad Irhmasyah, Image Data Acquisition and Classification of Vannamei Shrimp Cultivation Results Based on Deep Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Muhammad Rizki, Arief Hermawan, Donny Avianto, Learning Accuracy with Particle Swarm Optimization for Music Genre Classification Using Recurrent Neural Networks , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Lusiana Efrizoni, Sarjon Defit, Muhammad Tajuddin, Anthony Anggrawan, Komparasi Ekstraksi Fitur dalam Klasifikasi Teks Multilabel Menggunakan Algoritma Machine Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Aris Tjahyanto, Faisal Johan Atletiko, Peningkatan Kinerja Pengklasifikasi Objek Bawah Laut dengan Deep Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Didih Rizki Chandranegara, Faras Haidar Pratama, Sidiq Fajrianur, Moch Rizky Eka Putra, Zamah Sari, Automated Detection of Breast Cancer Histopathology Image Using Convolutional Neural Network and Transfer Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
You may also start an advanced similarity search for this article.