Performance Evaluation of Artificial Intelligence Models for Classification in Concept Map Quality Assessment
DOI:
https://doi.org/10.30812/matrik.v24i3.4729Keywords:
Classification, Concept Maps, Machine Learning, Quality AssessmentAbstract
Open-ended concept maps generated by students give better flexibility and present a complex analysis process for teachers. We investigate the application of classification algorithms in assessing openended concept maps, with the purpose of providing assistance for teachers in evaluating student comprehension. The method used in this study is experimental methods, which consists of data collection, preprocessing, representation generation, and modelling with Feedforward Neural Network, Random Forest, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree, and Logistic Regression. Our dataset, derived from concept maps, consists of 3,759 words forming 690 propositions, scored carefully by experts to ensure high accuracy in the evaluation process. Results of this study indicate that K-NN outperformed all other models, achieving the highest accuracy and Receiver Operating Characteristic-Area Under the Curve scores, demonstrating its robustness in distinguishing between classes. Support Vector Machine excelled in precision, effectively minimizing false positives, while Random Forest showcased a balanced performance through its ensemble learning approach. Decision Tree and Linear Regression showed limitations in handling complex data patterns. Feedforward
Neural Network can model intricate relationships, but needs further optimization. This research concluded that Artificial Intelligence classification enables a better assessment for teachers, enables the path for personalized learning strategies in learning.
Downloads
References
[1] M. Ghosh and A. Thirugnanam, “Introduction to Artificial Intelligence,” in Artificial Intelligence for Information Management:
A Healthcare Perspective, K. G. Srinivasa, S. G. M., and S. R. M. Sekhar, Eds. Singapore: Springer Singapore, 2021, vol. 88,
pp. 23–44, https://doi.org/10.1007/978-981-16-0415-7 2.
[2] C. Chhabra and S. Choudhary, “Assessing Intelligence Text Classification Techniques,” in Decision Analytics for Sustainable
Development in Smart Society 5.0, V. Bali, V. Bhatnagar, J. Lu, and K. Banerjee, Eds. Singapore: Springer Nature Singapore,
2022, pp. 55–63, https://doi.org/10.1007/978-981-19-1689-2 4.
[3] D. Kim, H.-G. Kang, K. Bae, and S. Jeon, “An artificial intelligence-enabled industry classification and its interpretation,”
Internet Research, vol. 32, no. 2, pp. 406–424, Mar. 2022, https://doi.org/10.1108/INTR-05-2020-0299.
[4] I. Dawar, N. Kumar, S. Negi, S. Pathan, and S. Layek, “Text Categorization using Supervised Machine Learning Techniques,”
in 2023 Sixth International Conference of Women in Data Science at Prince Sultan University (WiDS PSU). Riyadh, Saudi
Arabia: IEEE, Mar. 2023, pp. 185–190, https://doi.org/10.1109/WiDS-PSU57071.2023.00046.
[5] S. N. Bardab, T. M. Ahmed, and T. A. A. Mohammed, “Data mining classification algorithms: An overview,” International
Journal of Advanced and Applied Sciences, vol. 8, no. 2, pp. 1–5, Feb. 2021, https://doi.org/10.21833/ijaas.2021.02.001.
[6] N. Dutta, U. Subramaniam, and S. Padmanaban, “Mathematical models of classification algorithm of Machine learning,” in
International Meeting on Advanced Technologies in Energy and Electrical Engineering. Fez, Morocco,: Hamad bin Khalifa
University Press (HBKU Press), 2020, https://doi.org/10.5339/qproc.2019.imat3e2018.3.
[7] V. V. Bobrova, O. I. Bantikova, and V. A. Novikova, “Modeling the academic performance of students based on intelligent
analysis of educational data,” Economic Analysis: Theory and Practice, vol. 22, no. 2, pp. 235–253, Feb. 2023, https://doi.org/
10.24891/ea.22.2.235.
[8] A. J. Martin, M. Maria, and F. Sagayaraj, “Learners Classification for Personalized Learning Experience in e-Learning Systems,”
International Journal of Advanced Computer Science and Applications, vol. 12, no. 4, pp. 690–697, 2021, https://doi.org/10.
14569/IJACSA.2021.0120485.
[9] M. Savic, D. Gunter, E. Curtis, and A. Paz Pirela, “Productive Failures: From Class Requirement to Fostering a Support Group,”
International Journal of Educational Psychology, vol. 10, no. 3, pp. 271–294, Oct. 2021, https://doi.org/10.17583/ijep.5994.
[10] H. Van Pham, L. H. T. Thuy, N. C. Hung, N. Q. Dich, S. L. Ngoc, and P. Moore, “Mentor and mentee matching: Using fuzzy
logic with a maximal length matching algorithm, expressed preferences, and expert knowledge,” Journal of Intelligent & Fuzzy
Systems, vol. 45, no. 3, pp. 4071–4087, Aug. 2023, https://doi.org/10.3233/JIFS-223820.
[11] L. K¨obis and C. Mehner, “Ethical Questions Raised by AI-Supported Mentoring in Higher Education,” Frontiers in Artificial
Intelligence, vol. 4, p. 624050, Apr. 2021, https://doi.org/10.3389/frai.2021.624050.
[12] S. Datta, “Role of Artificial Intelligence in Education,” International Journal of English Learning & Teaching Skills, vol. 4,
no. 4, pp. 1–9, Jul. 2022, https://doi.org/10.15864/ijelts.4408.
[13] A. Harry and S. Sayudin, “Role of AI in Education,” Interdiciplinary Journal and Hummanity (INJURITY), vol. 2, no. 3, pp.
260–268, Mar. 2023, https://doi.org/10.58631/injurity.v2i3.52.
[14] S. V. Tytenko, “Concept Maps, Their Application Types and Methods in Information and Learning Systems,” KPI Science News,
vol. 4, no. 8, pp. 70–78, Mar. 2021, https://doi.org/10.20535/kpisn.2020.4.227090.
[15] P. Eachempati, K. Ramnarayan, K. K. Ks, and A. Mayya, “Concept Maps for Teaching, Training, Testing and Thinking,”
MedEdPublish, vol. 9, p. 171, Aug. 2020, https://doi.org/10.15694/mep.2020.000171.1.
[16] D. D. Prasetya, T. Hirashima, and Y. Hayashi, “Study on Extended Scratch-Build Concept Map to Enhance Students’ Understanding
and Promote Quality of Knowledge Structure,” International Journal of Advanced Computer Science and Applications,
vol. 11, no. 4, pp. 144–153, 2020, https://doi.org/10.14569/IJACSA.2020.0110420.
[17] D. D. Prasetya, T. Widiyaningtyas, and T. Hirashima, “Interrelatedness patterns of knowledge representation in extension
concept mapping,” Research and Practice in Technology Enhanced Learning, vol. 20, no. 9, pp. 1–18, May 2024,
https://doi.org/10.58459/rptel.2025.20009.
[18] K. E. De Ries, H. Schaap, A.-M. M. J. A. P. Van Loon, M. M. H. Kral, and P. C. Meijer, “A literature review of open-ended
concept maps as a research instrument to study knowledge and learning,” Quality & Quantity, vol. 56, no. 1, pp. 73–107, Feb.
2022, https://doi.org/10.1007/s11135-021-01113-x.
[19] D. D. Prasetya and T. Hirashima, “Associated Patterns in Open-Ended Concept Maps within E-Learning,” Knowledge Engineering
and Data Science, vol. 5, no. 2, pp. 179–187, Dec. 2022, https://doi.org/10.17977/um018v5i22022p179-187.
[20] V. Maphosa and M. Maphosa, “Artificial intelligence in higher education: A bibliometric analysis and topic modeling approach,”
Applied Artificial Intelligence, vol. 37, no. 1, pp. 1–23, Dec. 2023, https://doi.org/10.1080/08839514.2023.2261730.
[21] T. Bleckmann and G. Friege, “Concept maps for formative assessment: Creation and implementation of an automatic and
intelligent evaluation method,” Knowledge Management & E-Learning: An International Journal, vol. 15, no. 3, pp. 433–447,
Jul. 2023.
[22] A. W. Fazil, M. Hakimi, R. Akbari, M. M. Quchi, and K. Q. Khaliqyar, “Comparative Analysis of Machine Learning Models
for Data Classification: An In-Depth Exploration,” Journal of Computer Science and Technology Studies, vol. 5, no. 4, pp.
160–168, Dec. 2023, https://doi.org/10.32996/jcsts.2023.5.4.16.
[23] M. S. Chowdhury, M. N. Rahman, M. S. Sheikh, M. A. Sayeid, K. H. Mahmud, and B. Hafsa, “GIS-based landslide susceptibility
mapping using logistic regression, random forest and decision and regression tree models in Chattogram District,
Bangladesh,” Heliyon, vol. 10, no. 1, p. e23424, Jan. 2024, https://doi.org/10.1016/j.heliyon.2023.e23424.
[24] R. Rofik, R. A. Hakim, J. Unjung, B. Prasetiyo, and M. A. Muslim, “Optimization of SVM and Gradient Boosting Models Using
GridSearchCV in Detecting Fake Job Postings,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer,
vol. 23, no. 2, pp. 419–430, Mar. 2024, https://doi.org/10.30812/matrik.v23i2.3566.
[25] R. Mondal, M. D. Do, N. U. Ahmed, D. Walke, D. Micheel, D. Broneske, G. Saake, and R. Heyer, “Decision tree learning
in Neo4j on homogeneous and unconnected graph nodes from biological and clinical datasets,” BMC Medical Informatics and
Decision Making, vol. 22, no. S6, pp. 1–12, Mar. 2023, https://doi.org/10.1186/s12911-023-02112-8.
[26] K. J. Grimm and R. Jacobucci, “Reliable Trees: Reliability Informed Recursive Partitioning for Psychological Data,” Multivariate
Behavioral Research, vol. 56, no. 4, pp. 595–607, Jul. 2021, https://doi.org/10.1080/00273171.2020.1751028.
[27] Aqib Fawwaz Mohd Amidon, Zakiah Mohd Yusoff, Nurlaila Ismail, and Mohd Nasir Taib, “KNN Euclidean Distance Model
Performance on Aquilaria Malaccensis Oil Qualities,” Journal of Advanced Research in Applied Sciences and Engineering
Technology, vol. 48, no. 2, pp. 16–28, Jul. 2024, https://doi.org/10.37934/araset.48.2.1628.
[28] K. Urkalan and G. T. V., “Concept Map Information Content Enhancement Using JointWord Embedding and Latent Document
Structure:,” International Journal on Semantic Web and Information Systems, vol. 16, no. 4, pp. 45–60, Oct. 2020, https:
//doi.org/10.4018/IJSWIS.2020100103.
[29] W. Jia, Y. Qin, and C. Zhao, “Rapid detection of adulterated lamb meat using near infrared and electronic nose: A F1-score-MRE
data fusion approach,” Food Chemistry, vol. 439, pp. 1–15, May 2024, https://doi.org/10.1016/j.foodchem.2023.138123.
[30] G. Phillips, H. Teixeira, M. G. Kelly, F. Salas Herrero, G. V´arb´ır´o, A. Lyche Solheim, A. Kolada, G. Free, and S. Poikane,
“Setting nutrient boundaries to protect aquatic communities: The importance of comparing observed and predicted classifications
using measures derived from a confusion matrix,” Science of The Total Environment, vol. 912, pp. 1–16, Feb. 2024,
https://doi.org/10.1016/j.scitotenv.2023.168872.
[31] Y. Liu, Y. Li, and D. Xie, “Implications of imbalanced datasets for empirical ROC-AUC estimation in binary classification
tasks,” Journal of Statistical Computation and Simulation, vol. 94, no. 1, pp. 183–203, Jan. 2024, https://doi.org/10.1080/
00949655.2023.2238235.
[32] D. D. Prasetya, A. Pinandito, Y. Hayashi, and T. Hirashima, “Analysis of quality of knowledge structure and students’ perceptions
in extension concept mapping,” Research and Practice in Technology Enhanced Learning, vol. 17, no. 1, pp. 1–25, Dec.
2022, https://doi.org/10.1186/s41039-022-00189-9.
[33] S. S. Bisarya, A. Shukla, and S. Kumar, “Data Preparation in Context of Social Sciences Research,” International Journal For
Multidisciplinary Research, vol. 5, no. 3, pp. 1–10, Jun. 2023, https://doi.org/10.36948/ijfmr.2023.v05i03.3937.
[34] M. Hameed and F. Naumann, “Data Preparation: A Survey of Commercial Tools,” ACM SIGMOD Record, vol. 49, no. 3, pp.
18–29, Dec. 2020, https://doi.org/10.1145/3444831.3444835.
[35] D. Varma, A. Nehansh, and P. Swathy, “Data Preprocessing Toolkit : An Approach to Automate Data Preprocessing,” Interantional
Journal of Scientific Research in Engineering and Management, vol. 07, no. 03, Mar. 2023, https://doi.org/10.55041/
IJSREM18270.
[36] T. Mustaqim, K. Umam, and M. A. Muslim, “Twitter text mining for sentiment analysis on government’s response to forest
fires with vader lexicon polarity detection and k-nearest neighbor algorithm,” Journal of Physics: Conference Series, vol. 1567,
no. 3, p. 032024, Jun. 2020, https://doi.org/10.1088/1742-6596/1567/3/032024.
[37] J. Rejito, A. Atthariq, and A. S. Abdullah, “Application of text mining employing k-means algorithms for clustering tweets of
Tokopedia,” Journal of Physics: Conference Series, vol. 1722, no. 1, pp. 1–10, Jan. 2021, https://doi.org/10.1088/1742-6596/
1722/1/012019.
[38] A. K. Ohm and K. K. Singh, “Study of Tokenization Strategies for the Santhali Language,” SN Computer Science, vol. 5, no. 7,
pp. 1–8, Aug. 2024, https://doi.org/10.1007/s42979-024-03083-x.
[39] E. Dotan, G. Jaschek, T. Pupko, and Y. Belinkov, “Effect of tokenization on transformers for biological sequences,” Bioinformatics,
vol. 40, no. 4, pp. 1–15, Mar. 2024, https://doi.org/10.1093/bioinformatics/btae196.
[40] Z. Abidin, A. Junaidi, and Wamiliana, “Text Stemming and Lemmatization of Regional Languages in Indonesia: A Systematic
Literature Review,” Journal of Information Systems Engineering and Business Intelligence, vol. 10, no. 2, pp. 217–231, Jun.
2024, https://doi.org/10.20473/jisebi.10.2.217-231.
[41] Z. A. Merrouni, B. Frikh, and B. Ouhbi, “EXABSUM: A new text summarization approach for generating extractive and
abstractive summaries,” Journal of Big Data, vol. 10, no. 1, pp. 1–34, Oct. 2023, https://doi.org/10.1186/s40537-023-00836-y.
[42] I. Akhmetov, A. Pak, I. Ualiyeva, and A. Gelbukh, “Highly Language-Independent Word Lemmatization Using a Machine-
Learning Classifier,” Computaci´on y Sistemas, vol. 24, no. 3, Sep. 2020, https://doi.org/10.13053/cys-24-3-3775.
[43] J. Zhou, Z. Ye, S. Zhang, Z. Geng, N. Han, and T. Yang, “Investigating response behavior through TF-IDF and Word2vec
text analysis: A case study of PISA 2012 problem-solving process data,” Heliyon, vol. 10, no. 16, pp. 1–22, Aug. 2024,
https://doi.org/10.1016/j.heliyon.2024.e35945.
[44] H. Zhou, “Research of Text Classification Based on TF-IDF and CNN-LSTM,” Journal of Physics: Conference Series, vol.
2171, no. 1, pp. 1–8, Jan. 2022, https://doi.org/10.1088/1742-6596/2171/1/012021.
[45] U. Rani and K. Bidhan, “Comparative Assessment of Extractive Summarization: TextRank, TF-IDF and LDA,” Journal of
scientific research, vol. 65, no. 01, pp. 304–311, 2021, https://doi.org/10.37398/JSR.2021.650140.
[46] Bogdan Khmelnitsky Melitopol State Pedagogical University (Ukraine), E. Murtaziiev, Y. Syusyukan, and Bogdan Khmelnitsky
Melitopol State Pedagogical University (Ukraine), “Mathematical Modeling: Main Stages and Classification of Models,”
Modern problems of modeling, vol. 24, pp. 140–146, Dec. 2022, https://doi.org/10.33842/2313125X-2022-24-140-146.
[47] L. Sundberg and J. Holmstr¨om, “Innovating by prompting: How to facilitate innovation in the age of generative AI,” Business
Horizons, vol. 67, no. 5, pp. 561–570, Sep. 2024, https://doi.org/10.1016/j.bushor.2024.04.014.
[48] N. Amaya-Tejera, M. Gamarra, J. I. V´elez, and E. Zurek, “A distance-based kernel for classification via Support Vector Machines,”
Frontiers in Artificial Intelligence, vol. 7, pp. 1–15, Feb. 2024, https://doi.org/10.3389/frai.2024.1287875.
[49] K. Wang, J. Liu, and X. Sun, “Support vector machine in big data: Smoothing strategy and adaptive distributed inference,”
Statistics and Computing, vol. 34, no. 6, pp. 1–19, Dec. 2024, https://doi.org/10.1007/s11222-024-10506-5.
[50] J. Wekalao and N. Mandela, “Terahertz metasurface biosensor for high-sensitivity salinity detection and data encoding with
machine learning optimization based on random forest regression,” Optical and Quantum Electronics, vol. 56, no. 11, pp. 1–39,
Nov. 2024, https://doi.org/10.1007/s11082-024-07777-7.
[51] N. Brugnone, N. Benkler, P. Revay, R. Myhre, S. Friedman, S. Schmer-Galunder, S. Gray, and J. Gentile, “Is from ought?
A comparison of unsupervised methods for structuring values-based wisdom-of-crowds estimates,” Journal of Computational
Social Science, vol. 7, no. 2, pp. 1327–1377, Oct. 2024, https://doi.org/10.1007/s42001-024-00273-8.
[52] R. Oktafiani, A. Hermawan, and D. Avianto, “Max Depth Impact on Heart Disease Classification: Decision Tree and Random
Forest,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 8, no. 1, pp. 160–168, Feb. 2024, https://doi.org/10.
29207/resti.v8i1.5574.
[53] U. G. Inyang, F. F. Ijebu, F. B. Osang, A. A. Afoluronsho, S. S. Udoh, and I. J. Eyoh, “A Dataset-Driven Parameter Tuning Approach
for Enhanced K-Nearest Neighbour Algorithm Performance,” International Journal on Advanced Science, Engineering
and Information Technology, vol. 13, no. 1, pp. 380–391, Jan. 2023, https://doi.org/10.18517/ijaseit.13.1.16706.
[54] S. Novo, G. Aneiros, and P. Vieu, “A k NN procedure in semiparametric functional data analysis,” Statistics & Probability
Letters, vol. 171, pp. 1–15, Apr. 2021, https://doi.org/10.1016/j.spl.2020.109028.
[55] E. C. Zabor, C. A. Reddy, R. D. Tendulkar, and S. Patil, “Logistic Regression in Clinical Studies,” International Journal of
Radiation Oncology*Biology*Physics, vol. 112, no. 2, pp. 271–277, Feb. 2022, https://doi.org/10.1016/j.ijrobp.2021.08.007.
[56] A. Zaidi and A. S. M. Al Luhayb, “Two Statistical Approaches to Justify the Use of the Logistic Function in Binary Logistic Regression,”
Mathematical Problems in Engineering, vol. 2023, no. 1, pp. 1–11, Jan. 2023, https://doi.org/10.1155/2023/5525675.
[57] A. Vella and M. A. Alonso, “Maximum likelihood estimation in the context of an optical measurement,” in Progress in Optics.
Elsevier, 2020, vol. 65, pp. 231–311, https://doi.org/10.1016/bs.po.2019.11.007.
[58] D. Chen, J. Ye, and W. Ye, “Interpretable selective learning in credit risk,” Research in International Business and Finance,
vol. 65, pp. 1–13, Apr. 2023, https://doi.org/10.1016/j.ribaf.2023.101940.
[59] E. H. Houssein, M. E. Hosney, M. M. Emam, D. Oliva, E. M. Younis, A. A. Ali, and W. M. Mohamed, “Optimizing feedforward
neural networks using a modified weighted mean of vectors: Case study chemical datasets,” Swarm and Evolutionary
Computation, vol. 89, pp. 1–29, Aug. 2024, https://doi.org/10.1016/j.swevo.2024.101656.
[60] M. F. Nia, E. Hu, and M. H. Ghayesh, “Direct and inverse simulations of hydrodynamic and thermal characteristics in
a room with random boundary conditions by feedforward neural network modelling,” Energy and Built Environment, p.
S2666123324000813, Aug. 2024, https://doi.org/10.1016/j.enbenv.2024.08.005.
[61] Z. Zhang, F. Feng, and T. Huang, “FNNS: An Effective Feedforward Neural Network Scheme with Random Weights for Processing
Large-Scale Datasets,” Applied Sciences, vol. 12, no. 23, pp. 1–14, Dec. 2022, https://doi.org/10.3390/app122312478.
[62] A. Kar, N. Nath, U. Kemprai, and Aman, “Performance Analysis of Support Vector Machine (SVM) on Challenging Datasets
for Forest Fire Detection,” International Journal of Communications, Network and System Sciences, vol. 17, no. 02, pp. 11–29,
2024, https://doi.org/10.4236/ijcns.2024.172002.
[63] F. Aldi, I. Nozomi, and S. Soeheri, “Comparison of Drug Type Classification Performance Using KNN Algorithm,” SinkrOn,
vol. 7, no. 3, pp. 1028–1034, Jul. 2022, https://doi.org/10.33395/sinkron.v7i3.11487.
[64] E. Y. Boateng, J. Otoo, and D. A. Abaye, “Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector
Machine, Random Forest and Neural Network: A Review,” Journal of Data Analysis and Information Processing, vol. 08,
no. 04, pp. 341–357, 2020, https://doi.org/10.4236/jdaip.2020.84020.
[65] H. A. Elzeheiry, S. Barakat, and A. Rezk, “An Efficient Ensemble Model for Various Scale Medical Data,” Computers, Materials
& Continua, vol. 73, no. 1, pp. 1283–1305, 2022, https://doi.org/10.32604/cmc.2022.027345.
[66] P. A. Sunarya, U. Rahardja, S. C. Chen, and Y.-M. Lic, “Deciphering Digital Social Dynamics: A Comparative Study of Logistic
Regression and Random Forest in Predicting E-Commerce Customer Behavior,” Journal of Applied Data Sciences, vol. 5, no. 1,
pp. 100–113, Jan. 2024, https://doi.org/10.47738/jads.v5i1.155.
[16] D. D. Prasetya, T. Hirashima, and Y. Hayashi, “Study on Extended Scratch-Build Concept Map to Enhance Students’ Understanding
and Promote Quality of Knowledge Structure,” International Journal of Advanced
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Wahyu Styo Pratama, Didik Dwi Prasetya, Anik Nurhandayani, Tsukasa Hirashima

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
How to Cite
Similar Articles
- Kasiyanto Kasiyanto, Aripriharta Aripriharta, Dekki Widiatmoko, Dodo Irmanto, Muhammad Cahyo Bagaskoro, Hostage Liberation Operations using Wheeled Robots Based on LIDAR (Light Detection and Ranging) Sensors , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Musta’an Musta’an, Dadang Priyanto, SISTEM INFORMASI PENGADAAN BARANG LANGSUNG BERBASIS CLIENT-SERVER (Study Kasus di Universitas Mataram) , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 15 No. 2 (2016)
- Viva Arifin, Velia Handayani, Luh Kesuma Wardhani, Hendra Bayu Suseno, Siti Ummi Masruroh, User Interface and Exprience Gamification-Based E-Learning with Design Science Research Methodology , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Rofik Rofik, Roshan Aland Hakim, Jumanto Unjung, Budi Prasetiyo, Much Aziz Muslim, Optimization of SVM and Gradient Boosting Models Using GridSearchCV in Detecting Fake Job Postings , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Mohammad Diqi, Ema Utami, Kusrini Kusrini, Ferry Wahyu Wibowo, Leveraging Vector Quantized Variational Autoencoder for Accurate Synthetic Data Generation in Multivariate Time Series , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Khairunnisak Nur Isnaini, Didit Suhartono, Evaluation of Basic Principles of Information Security at University Using COBIT 5 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
- Heru Pramono Hadi, Eko Hari Rachmawanto, Rabei Raad Ali, Comparison of DenseNet-121 and MobileNet for Coral Reef Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Christofer Satria, Anthony Anggrawan, Tinjauan Kritis Jurnal Ilmiah: “The Influence of Transformational Leadership and Organizational Culture on Learning Organization: a Comparative Analysis of The it Sector†, MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 1 (2018)
- Aditya Dwi Putro, Arief Hermawan, Pengaruh Cahaya dan Kualitas Citra dalam Klasifikasi Kematangan Pisang Cavendish Berdasarkan Ciri Warna Menggunakan Artificial Neural Network , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Sri Suwarno, Erick Kurniawan, Multi-Level Pooling Model for Fingerprint-Based Gender Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- F.ti Ayyu Sayyidul Laily, Didik Dwi Prasetya, Anik Nur Handayani, Tsukasa Hirashima, Revealing Interaction Patterns in Concept Map Construction Using Deep Learning and Machine Learning Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Reni Fatrisna Salsabila, Didik Dwi Prasetya, Triyanna Widyaningtyas, Tsukasa Hirashima, Comparison of Text Representation for Clustering Student Concept Maps , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Muhammad Zaki Wiryawan, Didik Dwi Prasetya, Anik Nur Handayani, Tsukasa Hirashima, Wahyu Styo Pratama, Lalu Ganda Rady Putra, Enhancing Semantic Similarity in Concept Maps Using LargeLanguage Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Reo Wicaksono, Didik Dwi Prasetya, Ilham Ari Elbaith Zaeni, Nadindra Dwi Ariyanta, Tsukasa Hirashima, Machine Learning for Open-ended Concept Map Proposition Assessment: Impact of Length on Accuracy , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 25 No. 1 (2025)
- Nadindra Dwi Ariyanta, Didik Dwi Prasetya, Ilham Ari Elbaith Zaeni, Tsukasa Hirashima, Reo Wicaksono, Assessing the Semantic Alignment in Multilingual Student-TeacherConcept Maps Using mBERT , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 25 No. 1 (2025)
.png)











