Penerapan Teorema Bayes untuk Mendiagnosa Penyakit Telinga Hidung Tenggorokan (THT)
DOI:
https://doi.org/10.30812/matrik.v18i2.398Keywords:
Ear, Nose and Throat disease, Bayes theorem, expert systems, computational timeAbstract
Ear, Nose and Throat Disease (ENT) is a common disease that is often considered a harmless disease by people, so they assume there is no need to see a doctor. But in fact, ENT disease can also provide serious disorders if not treated early and right, so the expert system of ENT is needed for early detection before the patient decided to see a doctor or not. Based on these problems, this study proposed the application of the Bayes theorem for early detection of ENT disease. The types of diseases used in this study were six types and had 22 symptoms. User inputs the symptoms of a disease, then the system will provide a diagnosis. This diagnosis can be used as an initial reference for sufferers and can be used as a reference for young doctors who are taking medical education with an ENT specialist. In this initial research, testing was carried out to calculate the computational time needed by the system to diagnose ENT disease. Based on this research, we found that the average computing time needed by the system to diagnose is 00:09:54 or Nine minutes, fifty-four seconds.
Downloads
References
[2] N. K. Pebriyanti and A. W. Andika, “Sistem Pakar Penentuan Tanaman Obat pada Penyakit THT berbasis Web,†SINTECH (Science Inf. Technol. J., vol. 1, no. 1, pp. 34–40, 2018
[3] Y. R. Nasution and Khairuna, “Sistem pakar deteksi awal penyakit tuberkulosis dengan metode bayes,†Klorofil, vol. 1, no. 1, pp. 17–23, 2017
[4] R. Ramadhan, “Pemodelan Sistem Pakar Diagnosa Penyakit Tanaman Cabai Merah Dengan Metode Fuzzy-Ahp.,†Repos. J. Mhs. PTIIK UB., vol. 6, no. 7, 2015
[5] Hamdani, “Sistem Pakar Untuk Diagnosa Penyakit Pada Manusia,†J. Inform. Mulawarman, vol. 5, no. 2, pp. 13-21., 2010
[6] M. A. Fahmy, I. P. Ningrum, and J. Y. Sari, “Sistem pakar diagnosis penyakit hewan sapi dengan metode forward chaining,†no. December, 2018
[7] Y. Hendriana, “PROGRAM BANTU IDENTIFIKASI PENYAKIT THT,†in Simposium Nasional Teknologi Terapan (SNTT), 2013, pp. 58–63
[8] S. Wahyu, P., Muhammad A.W. dan Bagus, “Sistem pakar berbasis web untuk diagnosa awal penyakit THT,†in Prosiding SNATI Yogyakarta, 2008
[9] H. T. Sihotang, E. Panggabean, and H. Zebua, “Sistem Pakar Mendiagnosa Penyakit Herpes Zoster Dengan Menggunakan Metode Teorema Bayes,†J. Inform. Pelita Nusant., vol. 3, no. 1, pp. 33–40, 2018
[10] C. Vikasari., “Modernisasi Teknologi Realtime pada Pelelangan Ikan dalam Menumbuhkan Perekonomian Berbasis Kemaritiman,†JUITA J. Inform., 2018.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Luh Kesuma Wardhani, Nenny Anggraini, Nashrul Hakiem, M. Tabah Rosyadi, Amin Rois, IoT-based Integrated System Portable Prayer Mat and DailyWorship Monitoring System , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Donny Kurniawan, Anthony Anggrawan, Hairani Hairani, Graduation Prediction System on Students Using C4.5 Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
- I Putu Hariyadi, Khairan Marzuki, Implementation of Configuration Management Virtual Private Server Using Ansible , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
- yusri ikhwani, Khairan Marzuki, As’ary Ramadhan, Automated University Lecture Schedule Generator based on Evolutionary Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Pungkas Subarkah, Enggar Pri Pambudi, Septi Oktaviani Nur Hidayah, Perbandingan Metode Klasifikasi Data Mining untuk Nasabah Bank Telemarketing , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 1 (2020)
- Supangat Supangat, Mohd Zainuri Bin Saringat, Mochamad Yovi Fatchur Rochman, Predicting Handling Covid-19 Opinion using Naive Bayes and TF-IDF for Polarity Detection , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Tb Ai Munandar, Ajif Yunizar Yusuf Pratama, Regional Clustering Based on Types of Non-Communicable Diseases Using k-Means Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Ahmad Ashril Rizal, Siti Soraya, Multi Time Steps Prediction dengan Recurrent Neural Network Long Short Term Memory , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 1 (2018)
- Akmal Setiawan Wijaya, Dhomas Hatta Fudholi, Ahmad R. Pratama, A computational approach in analyzing the empathy to online donations during COVID-19 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Pardomuan Robinson Sihombing, Istiqomatul Fajriyah Yuliati, Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
You may also start an advanced similarity search for this article.
.png)











