K-Means Optimization Algorithm to Improve Cluster Quality on Sparse Data
DOI:
https://doi.org/10.30812/matrik.v23i3.3936Keywords:
Clustering, K-Means, Optimization algorithm, Sparse dataAbstract
The aim of this research is clustering sparse data using various K-Means optimization algorithms. Sparse data used in this research came from Citampi Stories game reviews on Google Play Store. This research method are Density Based Spatial Clustering of Applications with Noise-Kmeans (DB-Kmeans), Particle Swarm Optimization-Kmeans (PSO-Kmeans), and Robust Sparse Kmeans Clustering (RSKC) which are evaluated using the silhouette score. Clustering sparse data presented a challenge as it could complicate the analysis process, leading to suboptimal or non-representative results. To address this challenge, the research employed an approach that involved dividing the data based on the number of terms in three different scenarios to reduce sparsity. The results of this research showed that DB-Kmeans had the potential to enhance clustering quality across most data scenarios. Additionally, this research found that dividing data based on the number of terms could effectively mitigate sparsity, significantly influencing the optimization of topic formation within each cluster. The conclusion of this research is that this approach is effective in enhancing the quality of clustering for sparse data, providing more diverse and easily interpretable information. The results of this research could be valuable for developers seeking to understand user preferences and enhance game quality.
Downloads
References
2020, https://doi.org/10.21275/ART20203995.
[2] I. C. Chang, T. K. Yu, Y. J. Chang, and T. Y. Yu, “Applying text mining, clustering analysis, and latent dirichlet allocation
techniques for topic classification of environmental education journals,†Sustainability (Switzerland), vol. 13, no. 19, pp. 1–20,
2021, https://doi.org/10.3390/su131910856.
[3] A. Subakti, H. Murfi, and N. Hariadi, “The performance of BERT as data representation of text clustering,†Journal of Big Data,
vol. 9, no. 1, pp. 1–21, 2022, https://doi.org/10.1186/s40537-022-00564-9.
[4] H. Hassani, C. Beneki, S. Unger, M. T. Mazinani, and M. R. Yeganegi, “Text mining in big data analytics,†Big Data and
Cognitive Computing, vol. 4, no. 1, pp. 1–34, 2020, https://doi.org/10.3390/bdcc4010001.
[5] A. A. Amer and H. I. Abdalla, “A set theory based similarity measure for text clustering and classification,†Journal of Big
Data, vol. 7, no. 74, pp. 1–43, 2020, https://doi.org/10.1186/s40537-020-00344-3.
[6] X. Gao, X. Ding, T. Han, and Y. Kang, “Analysis of influencing factors on excellent teachers’ professional growth based on
DB-Kmeans method,†Eurasip Journal on Advances in Signal Processing, vol. 117, no. 1, pp. 1–11, 2022, https://doi.org/10.
1186/s13634-022-00948-2
649
[7] S. He, D. Luo, and K. Guo, “Evaluation of mineral resources carrying capacity based on the particle swarm optimization
clustering algorithm,†Journal of the Southern African Institute of Mining and Metallurgy, vol. 120, no. 12, pp. 681–691, 2020,
https://doi.org/10.17159/2411-9717/1139/2020.
[8] M. A. Hosen, S. H. Moz, S. S. Kabir, S. M. Galib, and M. N. Adnan, “Enhancing Thyroid Patient Dietary Management with
an Optimized Recommender System based on PSO and K-means,†in Procedia Computer Science, vol. 230, no. 3, 2023, pp.
688–697, https://doi.org/10.1016/j.procs.2023.12.124.
[9] M. B. Aulia and L. Kusdibyo, Analisis Persepsi Konsumen Terhadap Desain Game Buatan Indonesia Dalam Konteks Teori
Game Design, Bandung, 2021, vol. 12, no. 12.
[10] J. Qiang, Z. Qian, Y. Li, Y. Yuan, and X. Wu, “Short Text Topic Modeling Techniques, Applications, and Performance: A
Survey,†IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 3, pp. 1427–1445, 2020, https://doi.org/10.1109/
TKDE.2020.2992485.
[11] S. Yang, G. Huang, and B. Cai, “Discovering Topic Representative Terms for Short Text Clustering,†IEEE Access, vol. 7, no. 7,
pp. 92 037–92 047, 2020, https://doi.org/10.1109/ACCESS.2019.2927345.
[12] A. Hadifar, L. Sterckx, T. Demeester, and C. Develder, “A self-training approach for short text clustering,†Workshop on
Representation Learning for NLP, vol. 4, no. 8, pp. 194–199, 2020, https://doi.org/10.18653/v1/w19-4322.
[13] J. L. Balsor, K. Arbabi, D. Singh, R. Kwan, J. Zaslavsky, E. Jeyanesan, and K. M. Murphy, “A Practical Guide to Sparse
k-Means Clustering for Studying Molecular Development of the Human Brain,†Frontiers in Neuroscience, vol. 15, no. 11, pp.
1–28, 2021, https://doi.org/10.3389/fnins.2021.668293.
[14] L. Hickman, S. Thapa, L. Tay, M. Cao, and P. Srinivasan, “Text Preprocessing for Text Mining in Organizational Research:
Review and Recommendations,†Organizational Research Methods, vol. 25, no. 1, pp. 114–146, 2022, https://doi.org/10.1177/
1094428120971683.
[15] M. A. Palomino and F. Aider, “Evaluating the Effectiveness of Text Pre-Processing in Sentiment Analysis,†Applied Sciences
(Switzerland), vol. 12, no. 17, pp. 1–21, 2022, https://doi.org/10.3390/app12178765.
[16] R. G. Garc´ıa, B. B. A´ n, D. V. NoËœ, C. Zepeda, and R.Mart´ınez, “Comparison of Clustering Algorithms in Text Clustering Tasks,â€
Computacion y Sistemas, vol. 24, no. 2, pp. 429–437, 2020, https://doi.org/10.13053/CyS-24-2-3369.
[17] N. Nurahman, A. Purwanto, and S. Mulyanto, “Klasterisasi Sekolah Menggunakan Algoritma K-Means berdasarkan Fasilitas,
Pendidik, dan Tenaga Pendidik,†MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 21, no. 2, pp.
337–350, 2022, https://doi.org/10.30812/matrik.v21i2.1411.
[18] I. G. M. S. S. Krisna, I. W. Supriana, I. D. M. B. A. Darmawan, A. Muliantara, N. A. S. ER, and L. G. Astuti, “Perbandingan
Pengelompokan Metode PSO K-Means Dan Tanpa PSO Dalam Pengelompokan Data Alert,†JELIKU (Jurnal Elektronik Ilmu
Komputer Udayana), vol. 11, no. 2, pp. 283–290, 2022, https://doi.org/10.24843/jlk.2022.v11.i02.p07.
[19] M. Shutaywi and N. N. Kachouie, “Silhouette analysis for performance evaluation in machine learning with applications to
clustering,†Entropy, vol. 23, no. 6, pp. 1–17, 2021, https://doi.org/10.3390/e23060759.
[20] S. Cao and X. Li, “Research on Disease and Pest Prediction Model Based on Sparse Clustering Algorithm,†in Procedia
Computer Science, vol. 208, no. 7, 2022, pp. 263–270, https://doi.org/10.1016/j.procs.2022.10.038.
K-
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Raisul Azhar, Kurniawan Kurniawan, APLIKASI KEAMANAN SMS MENGGUNAKAN ALGORITMA RIJNDAEL , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 16 No. 1 (2016)
- Haryati Haryati, Shinta Esabella, Rancang Bangun Aplikasi Sastra Lisan (Lawas) Khas Sumbawa Berbasis Android , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Fristi Riandari, Hengki Tamando Sihotang, Husain Husain, Forecasting the Number of Students in Multiple Linear Regressions , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
- Pungkas Subarkah, Enggar Pri Pambudi, Septi Oktaviani Nur Hidayah, Perbandingan Metode Klasifikasi Data Mining untuk Nasabah Bank Telemarketing , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 1 (2020)
- Mochamad Wahyudi, Firmansyah Firmansyah, Analisis Performa Open Shortest Path First Load Balancing dengan Metode Cost Manipulation , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Vikky Aprelia Windarni, Adi Setiawan, Atina Rahmatalia, Comparison of the Karney Polygon Method and the Shoelace Method for Calculating Area , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Muhammad Furqan Nazuli, Muhammad Fachrurrozi, Muhammad Qurhanul Rizqie, Abdiansah Abdiansah, Muhammad Ikhsan, A Image Classification of Poisonous Plants Using the MobileNetV2 Convolutional Neural Network Model Method , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Michael Michael, Frenky Tanoto, Eric Wibowo, Frenky Lutan, Abdi Dharma, Pengenalan Plat Kendaraan Bermotor dengan Menggunakan Metode Template Matching dan Deep Belief Network , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Alya Masitha, Muhammad Kunta Biddinika, Herman Herman, K Value Effect on Accuracy Using the K-NN for Heart Failure Dataset , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Syafri Arlis, Muhammad Reza Putra, Musli Yanto, Improved Image Segmentation using Adaptive Threshold Morphology on CT-Scan Images for Brain Tumor Detection , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
You may also start an advanced similarity search for this article.
.png)











