K-Means Optimization Algorithm to Improve Cluster Quality on Sparse Data
DOI:
https://doi.org/10.30812/matrik.v23i3.3936Keywords:
Clustering, K-Means, Optimization algorithm, Sparse dataAbstract
The aim of this research is clustering sparse data using various K-Means optimization algorithms. Sparse data used in this research came from Citampi Stories game reviews on Google Play Store. This research method are Density Based Spatial Clustering of Applications with Noise-Kmeans (DB-Kmeans), Particle Swarm Optimization-Kmeans (PSO-Kmeans), and Robust Sparse Kmeans Clustering (RSKC) which are evaluated using the silhouette score. Clustering sparse data presented a challenge as it could complicate the analysis process, leading to suboptimal or non-representative results. To address this challenge, the research employed an approach that involved dividing the data based on the number of terms in three different scenarios to reduce sparsity. The results of this research showed that DB-Kmeans had the potential to enhance clustering quality across most data scenarios. Additionally, this research found that dividing data based on the number of terms could effectively mitigate sparsity, significantly influencing the optimization of topic formation within each cluster. The conclusion of this research is that this approach is effective in enhancing the quality of clustering for sparse data, providing more diverse and easily interpretable information. The results of this research could be valuable for developers seeking to understand user preferences and enhance game quality.
Downloads
References
2020, https://doi.org/10.21275/ART20203995.
[2] I. C. Chang, T. K. Yu, Y. J. Chang, and T. Y. Yu, “Applying text mining, clustering analysis, and latent dirichlet allocation
techniques for topic classification of environmental education journals,†Sustainability (Switzerland), vol. 13, no. 19, pp. 1–20,
2021, https://doi.org/10.3390/su131910856.
[3] A. Subakti, H. Murfi, and N. Hariadi, “The performance of BERT as data representation of text clustering,†Journal of Big Data,
vol. 9, no. 1, pp. 1–21, 2022, https://doi.org/10.1186/s40537-022-00564-9.
[4] H. Hassani, C. Beneki, S. Unger, M. T. Mazinani, and M. R. Yeganegi, “Text mining in big data analytics,†Big Data and
Cognitive Computing, vol. 4, no. 1, pp. 1–34, 2020, https://doi.org/10.3390/bdcc4010001.
[5] A. A. Amer and H. I. Abdalla, “A set theory based similarity measure for text clustering and classification,†Journal of Big
Data, vol. 7, no. 74, pp. 1–43, 2020, https://doi.org/10.1186/s40537-020-00344-3.
[6] X. Gao, X. Ding, T. Han, and Y. Kang, “Analysis of influencing factors on excellent teachers’ professional growth based on
DB-Kmeans method,†Eurasip Journal on Advances in Signal Processing, vol. 117, no. 1, pp. 1–11, 2022, https://doi.org/10.
1186/s13634-022-00948-2
649
[7] S. He, D. Luo, and K. Guo, “Evaluation of mineral resources carrying capacity based on the particle swarm optimization
clustering algorithm,†Journal of the Southern African Institute of Mining and Metallurgy, vol. 120, no. 12, pp. 681–691, 2020,
https://doi.org/10.17159/2411-9717/1139/2020.
[8] M. A. Hosen, S. H. Moz, S. S. Kabir, S. M. Galib, and M. N. Adnan, “Enhancing Thyroid Patient Dietary Management with
an Optimized Recommender System based on PSO and K-means,†in Procedia Computer Science, vol. 230, no. 3, 2023, pp.
688–697, https://doi.org/10.1016/j.procs.2023.12.124.
[9] M. B. Aulia and L. Kusdibyo, Analisis Persepsi Konsumen Terhadap Desain Game Buatan Indonesia Dalam Konteks Teori
Game Design, Bandung, 2021, vol. 12, no. 12.
[10] J. Qiang, Z. Qian, Y. Li, Y. Yuan, and X. Wu, “Short Text Topic Modeling Techniques, Applications, and Performance: A
Survey,†IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 3, pp. 1427–1445, 2020, https://doi.org/10.1109/
TKDE.2020.2992485.
[11] S. Yang, G. Huang, and B. Cai, “Discovering Topic Representative Terms for Short Text Clustering,†IEEE Access, vol. 7, no. 7,
pp. 92 037–92 047, 2020, https://doi.org/10.1109/ACCESS.2019.2927345.
[12] A. Hadifar, L. Sterckx, T. Demeester, and C. Develder, “A self-training approach for short text clustering,†Workshop on
Representation Learning for NLP, vol. 4, no. 8, pp. 194–199, 2020, https://doi.org/10.18653/v1/w19-4322.
[13] J. L. Balsor, K. Arbabi, D. Singh, R. Kwan, J. Zaslavsky, E. Jeyanesan, and K. M. Murphy, “A Practical Guide to Sparse
k-Means Clustering for Studying Molecular Development of the Human Brain,†Frontiers in Neuroscience, vol. 15, no. 11, pp.
1–28, 2021, https://doi.org/10.3389/fnins.2021.668293.
[14] L. Hickman, S. Thapa, L. Tay, M. Cao, and P. Srinivasan, “Text Preprocessing for Text Mining in Organizational Research:
Review and Recommendations,†Organizational Research Methods, vol. 25, no. 1, pp. 114–146, 2022, https://doi.org/10.1177/
1094428120971683.
[15] M. A. Palomino and F. Aider, “Evaluating the Effectiveness of Text Pre-Processing in Sentiment Analysis,†Applied Sciences
(Switzerland), vol. 12, no. 17, pp. 1–21, 2022, https://doi.org/10.3390/app12178765.
[16] R. G. Garc´ıa, B. B. A´ n, D. V. NoËœ, C. Zepeda, and R.Mart´ınez, “Comparison of Clustering Algorithms in Text Clustering Tasks,â€
Computacion y Sistemas, vol. 24, no. 2, pp. 429–437, 2020, https://doi.org/10.13053/CyS-24-2-3369.
[17] N. Nurahman, A. Purwanto, and S. Mulyanto, “Klasterisasi Sekolah Menggunakan Algoritma K-Means berdasarkan Fasilitas,
Pendidik, dan Tenaga Pendidik,†MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 21, no. 2, pp.
337–350, 2022, https://doi.org/10.30812/matrik.v21i2.1411.
[18] I. G. M. S. S. Krisna, I. W. Supriana, I. D. M. B. A. Darmawan, A. Muliantara, N. A. S. ER, and L. G. Astuti, “Perbandingan
Pengelompokan Metode PSO K-Means Dan Tanpa PSO Dalam Pengelompokan Data Alert,†JELIKU (Jurnal Elektronik Ilmu
Komputer Udayana), vol. 11, no. 2, pp. 283–290, 2022, https://doi.org/10.24843/jlk.2022.v11.i02.p07.
[19] M. Shutaywi and N. N. Kachouie, “Silhouette analysis for performance evaluation in machine learning with applications to
clustering,†Entropy, vol. 23, no. 6, pp. 1–17, 2021, https://doi.org/10.3390/e23060759.
[20] S. Cao and X. Li, “Research on Disease and Pest Prediction Model Based on Sparse Clustering Algorithm,†in Procedia
Computer Science, vol. 208, no. 7, 2022, pp. 263–270, https://doi.org/10.1016/j.procs.2022.10.038.
K-
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Dinny Komalasari, Maria Ulfa, Pengujian Usability Heuristic Terhadap Perangkat Lunak Pembelajaran Matematika , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
- Ni Wayan Sumartini Saraswati, I Wayan Agustya Saputra, Sistem Monitoring Tekanan Air pada PDAM Gianyar Berbasis Web , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Sucipto Sucipto, Didik Dwi Prasetya, Triyanna Widiyaningtyas, Educational Data Mining: Multiple Choice Question Classification in Vocational School , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Mudafiq Riyan Pratama, Muhammad Yunus, Sistem Deteksi Struktur Kalimat Bahasa Arab Menggunakan Algoritma Light Stemming , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Cindy Ameilia Suhendra, Marsani Asfi, Widya Jati Lestari, Ilwan Syafrinal, Sistem Peramalan Persediaan Sparepart Menggunakan Metode Weight Moving Average dan Reorder Point , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Akmal Setiawan Wijaya, Dhomas Hatta Fudholi, Ahmad R. Pratama, A computational approach in analyzing the empathy to online donations during COVID-19 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Michelle Cantika Pontoan, Jay Idoan SIhotang, Erienika Lompoliu, Information Security Analysis of Online Education Management System using Information Technology Infrastructure Library Version 3 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Pardomuan Robinson Sihombing, Istiqomatul Fajriyah Yuliati, Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Rizky Muliani Dwi Ujianti, Mega Novita, Iffah Muflihati, Pemetaan Dimensi Ketahanan Pangan berbasis Web GIS dan Metode TOPSIS , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Ni Gusti Ayu Dasriani, Anthony Anggrawan, Pengembangan Sistem Aplikasi Cerdas Memprediksi Penjualan Mebel Berbasis website , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
You may also start an advanced similarity search for this article.
.png)











