Accuracy of K-Nearest Neighbors Algorithm Classification For Archiving Research Publications
DOI:
https://doi.org/10.30812/matrik.v23i3.3915Keywords:
Accuracy, Algorithm Classification, K-Nearest NeighborsAbstract
The Archives and Research Publication Information System plays an important role in managing academic research and scientific publications efficiently. With the increasing volume of research and publications carried out each year by university researchers, the Research Archives and Publications Information System is essential for organizing and processing these materials. However, managing large amounts of data poses challenges, including the need to accurately classify a researcher's field of study. To overcome these challenges, this research focuses on implementing the K-Nearest Neighbors classification algorithm in the Archives and Research Publications Information System application. This research aims to improve the accuracy of classification systems and facilitate better decision-making in the management of academic research. This research method is systematic involving data acquisition, pre-processing, algorithm implementation, and evaluation. The results of this research show that integrating Chi-Square feature selection significantly improves K-Nearest Neighbors performance, achieving 86% precision, 84.3% recall, 89.2% F1 Score, and 93.3% accuracy. This research contributes to increasing the efficiency of the Archives and Research Publication Information System in managing research and academic publications.
Downloads
References
MobileNet v2 model,†International Journal of Advances in Intelligent Informatics, vol. 6, no. 2, pp. 135–148, Jul. 2020,
https://doi.org/10.26555/ijain.v6i2.492.
[2] J. Setiabudi, I. G. A. A. E. Indira, and N. M. D. Puspawati, “Profil Pra Kanker dan Kanker Kulit di RSUP Sanglah Periode
2015-2018,†E-Jurnal Medika Udayana, vol. 10, no. 3, pp. 83–88, Mar. 2021, https://doi.org/10.24843/MU.2021.V10.i3.P13.
[3] M. Miftahurrohmah, S. Fatimah, and I. Subarkah, “Metode Al-Miftah Lil ’Ulum sebagai Upaya Meningkatkan Motivasi
dan Kemampuan Siswa dalam Membaca Kitab Kuning di SMP Ar-Raudhah,†Social, Humanities, and Educational Studies
(SHES): Conference Series, vol. 6, no. 1, pp. 169–176, Feb. 2023, https://doi.org/10.20961/shes.v6i1.71074.
[4] A. Hayati, “The Use of Digital Guessing Game to Improve Students Speaking Ability,†Journal of English Education and
Teaching, vol. 4, no. 1, pp. 115–126, Mar. 2020, https://doi.org/10.33369/jeet.4.1.115-126.
[5] M. Z. Katili, L. N. Amali, and M. S. Tuloli, “Implementasi Metode AHP-TOPSIS dalam Sistem Pendukung
Rekomendasi Mahasiswa Berprestasi,†Jambura Journal of Informatics, vol. 3, no. 1, pp. 1–10, Apr. 2021,
https://doi.org/10.37905/jji.v3i1.10246.
[6] W. Widyaningsih, I. I. Tritoasmoro, and N. C. Kumalasari, “Perbandingan Klasifikasi Kematangan Buah Kopi Menggunakan
Metode Fuzzy Logic Dan K-Nearest Neighbor Dengan Ekstraksi Ciri Gray Level Co-Occurrrence Matrix,†eProceedings of
Engineering, vol. 7, no. 2, pp. 40–60, Aug. 2020.
[7] P. A. Nugroho, I. Fenriana, and R. Arijanto, “Implementasi Deep Learning Menggunakan Convolutional Neural Network
(CNN) pada Ekspresi Manusia,†ALGOR, vol. 2, no. 1, pp. 12–20, Nov. 2020.
[8] E. Goodarzi, M. Sohrabivafa, H. A. Adineh, L. Moayed, and Z. Khazaei, “Geographical distribution global incidence and
mortality of lung cancer and its relationship with the Human Development Index (HDI); an ecology study in 2018,†World
Cancer Research Journal, vol. 6, no. 1, pp. 1–11, Jul. 2020, https://doi.org/10.32113/wcrj 20197 1354.
[9] Y. Jusman, M. K. Anam, S. Puspita, E. Saleh, S. N. A. M. Kanafiah, and R. I. Tamarena, “Comparison of Dental
Caries Level Images Classification Performance using KNN and SVM Methods,†in 2021 IEEE International Conference
on Signal and Image Processing Applications (ICSIPA). Kuala Terengganu, Malaysia: IEEE, Sep. 2021, pp. 167–172,
https://doi.org/10.1109/ICSIPA52582.2021.9576774.
[10] N. Alyyu, Y. N. Fuadah, and N. K. C. Pratiwi, “Klasifikasi Kanker Kulit Ganas Dan Jinak Menggunakan Metode Convolutional
Neural Network,†eProceedings of Engineering, vol. 9, no. 6, pp. 3200–3206, 2022.
[11] S. Ulya, M. A. Soeleman, and F. Budiman, “Optimasi Parameter K Pada Algoritma K-NN Untuk Klasifikasi Prioritas Bantuan
Pembangunan Desa,†Techno.Com, vol. 20, no. 1, pp. 83–96, Feb. 2021, https://doi.org/10.33633/tc.v20i1.4215.
[12] R. Agustina, R. Magdalena, and N. K. C. Pratiwi, “Klasifikasi Kanker Kulit menggunakan Metode Convolutional Neural
Network dengan Arsitektur VGG-16,†ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik
Elektronika, vol. 10, no. 2, pp. 446–457, Apr. 2022, https://doi.org/10.26760/elkomika.v10i2.446.
[13] V. Radhika and B. S. Chandana, “Skin Melanoma Classification from Dermoscopy Images using ANU-Net Technique,â€
International Journal of Advanced Computer Science and Applications, vol. 13, no. 10, pp. 928–938, 2022,
https://doi.org/10.14569/IJACSA.2022.01310109.
[14] D. Valero-Carreras, J. Alcaraz, and M. Landete, “Comparing two SVM models through different metrics based on the confusion
matrix,†Computers & Operations Research, vol. 152, no. 1, pp. 1–12, Apr. 2023, https://doi.org/10.1016/j.cor.2022.106131.
[15] D. Boi, B. Runje, D. Lisjak, and D. Kolar, “Metrics Related to Confusion Matrix as Tools for Conformity Assessment
Decisions,†Applied Sciences, vol. 13, no. 14, pp. 8187–8197, Jul. 2023, https://doi.org/10.3390/app13148187.
[16] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A Survey of Convolutional Neural Networks: Analysis, Applications, and
Prospects,†IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 12, pp. 6999–7019, Dec. 2022,
https://doi.org/10.1109/TNNLS.2021.3084827.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Zilvanhisna Emka Fitri, Lalitya Nindita Sahenda, Sulton Mubarok, Abdul Madjid, Arizal Mujibtamala Nanda Imron, Implementing K-Nearest Neighbor to Classify Wild Plant Leaf as a Medicinal Plants , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Rakandhiya Daanii Rachmanto, Ahmad Naufal Labiib Nabhaan, Arief Setyanto, Deep Learning Model Compression Techniques Performance on Edge Devices , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Pungkas Subarkah, Penerapan Algoritme Klasifikasi Classification And Regression Trees (CART) Untuk Diagnosis Penyakit Diabetes Retinopathy , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
- Muhammad Tajuddin, Ahmat Adil, Andi Sofyan Anas, Game for Sasak Script Based on Knuth Morris Pratt Algorithm and ADDIE Model , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Mukhlis Mukhlis, Puput Yuniar Maulidia, Achmad Mujib, Adi Muhajirin, Alpi Surya Perdana, Integration of Deep Learning and Autoregressive Models for Marine Data Prediction , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Herlina Jayadianti, Budi Santosa, Judanti Cahyaning, Shoffan Saifullah, Rafal Drezewski, Essay auto-scoring using N-Gram and Jaro Winkler based Indonesian Typos , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Kasiyanto Kasiyanto, Aripriharta Aripriharta, Dekki Widiatmoko, Dodo Irmanto, Muhammad Cahyo Bagaskoro, Hostage Liberation Operations using Wheeled Robots Based on LIDAR (Light Detection and Ranging) Sensors , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Dela Ananda Setyarini, Agnes Ayu Maharani Dyah Gayatri, Christian Sri Kusuma Aditya, Didih Rizki Chandranegara, Stroke Prediction with Enhanced Gradient Boosting Classifier and Strategic Hyperparameter , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Ismail Husein, Rina Widyasari, Algorithm Symmetric 2-DLDA for Recognizing Handwritten Capital Letters , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
- Gallen cakra adhi wibowo, Sri Yulianto Joko Prasetyo, Irwan Sembiring, Tsunami Vulnerability and Risk Assessment in Banyuwangi District using machine learning and Landsat 8 image data , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Viva Arifin, Velia Handayani, Luh Kesuma Wardhani, Hendra Bayu Suseno, Siti Ummi Masruroh, User Interface and Exprience Gamification-Based E-Learning with Design Science Research Methodology , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Siti Ummi Masruroh, Andrew Fiade, Muhammad Ikhsan Tanggok, Rizka Amalia Putri, Luigi Ajeng Pratiwi, Convolutional Neural Network for Colorization of Black and White Photos , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Siti Ummi Masruroh, Cong Dai Nguyen, Doni Febrianus, Comparative Analysis of TF-IDF and Modern Text Embedding for theClassification of Islamic Ideologies on Indonesian Twitter , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 25 No. 1 (2025)
.png)











