DenseNet Architecture for Efficient and Accurate Recognition of Javanese Script Hanacaraka Character
DOI:
https://doi.org/10.30812/matrik.v23i2.3855Keywords:
Convolution Neural Network, Character Recognition, Cultural Heritage Preservation, Densenet, Javanese Hanacaraka ScriptAbstract
This study introduced a specifically optimized DenseNet architecture for recognizing Javanese Hanacaraka characters, focusing on enhancing efficiency and accuracy. The research aimed to preserve and celebrate Java’s rich cultural heritage and historical significance through the development of precise character recognition technology. The method used advanced techniques within convolutional neural networks (CNN) to integrate feature extraction across densely connected layers efficiently. The result of this study was that the developed model achieved a training accuracy of 100% and a validation accuracy of approximately 99.50% after 30 training epochs. Furthermore, when tested on previously unseen datasets, the model exhibited exceptional accuracy, precision, recall, and F1-score, reaching 100%. These findings underscored the remarkable capability of DenseNet architecture in character recognition, even across novel datasets, suggesting significant potential for automating Javanese Hanacaraka text processing across various applications, ranging from text recognition to digital archiving. The conclusion drawn from this study suggests that optimizing DenseNet architecture can be a significant step in preserving and developing character recognition technology for Javanese
Downloads
References
[2] J. Sukoyo, E. S. Utami, and E. Kurniati, “The Development of Montessori-Based Javanese Script Learning Model,†Proceedings
of the 2nd International Conference on Innovation in Education and Pedagogy (ICIEP 2020), vol. 619, no. Iciep 2020, pp. 99–
102, 2022.
[3] J. D. Kelleher, The Deep Learning, 2019.
[4] A. Dhillon and G. K. Verma, “Convolutional neural network: a review of models, methodologies and applications to object
detection,†Progress in Artificial Intelligence, vol. 9, no. 2, pp. 85–112, 2020, doi: 10.1007/s13748-019-00203-0.
[5] N. P. Sutramiani, N. Suciati, and D. Siahaan, “Transfer Learning on Balinese Character Recognition of Lontar Manuscript Using
MobileNet,†ICICoS 2020 - Proceeding: 4th International Conference on Informatics and Computational Sciences, pp. 0–4,
2020, doi: 10.1109/ICICoS51170.2020.9299030.
[6] S. K. C and C. Nattee, “Handwritten Alphanumeric Character Recognition,†vol. 12, no. 1, pp. 20–30, 2023, doi:
10.5072/FK26H4PV9J.2023.05.08.001.
[7] V. Madane, K. Ovhal, and M. Bhong, “Handwriting Recognition Using Artificial Intelligence Neural Network and Image
Processing,†International Research Journal of Modernization in Engineering Technology and Science, no. 03, pp. 1432–1447,
2023, doi: 10.56726/irjmets34395.
[8] S. F. M¨uller-Cleve, V. Fra, L. Khacef, A. Peque˜no-Zurro, D. Klepatsch, E. Forno, D. G. Ivanovich, S. Rastogi, G. Urgese,
F. Zenke, and C. Bartolozzi, “Braille letter reading: A benchmark for spatio-temporal pattern recognition on neuromorphic
hardware,†Frontiers in Neuroscience, vol. 16, 2022, doi: 10.3389/fnins.2022.951164.
[9] U. BS and U. K, “a Review Paper on Ocr Using Convolutional Neural Networks,†International Journal of Engineering Applied
Sciences and Technology, vol. 7, no. 7, pp. 102–106, 2022, doi: 10.33564/ijeast.2022.v07i07.018.
[10] M. F. Muhdalifah, “Pooling Comparison in CNN Architecture for Javanese Script Classification,†International Journal of
Informatics and Computation, vol. 3, no. 2, p. 15, 2022, doi: 10.35842/ijicom.v3i2.30.
[11] A. Budiman, A. Fadlil, and R. Umar, “Identification of Learning Javanese Script Handwriting Using Histogram Chain Code,â€
EDUMASPUL: Jurnal Pendidikan, vol. 7, no. 1, pp. 147–153, 2023.
[12] M. A. Rasyidi, T. Bariyah, Y. I. Riskajaya, and A. D. Septyani, “Classification of handwritten javanese script using random
forest algorithm,†Bulletin of Electrical Engineering and Informatics, vol. 10, no. 3, pp. 1308–1315, 2021, doi:
10.11591/eei.v10i3.3036.
[13] D. R. Sarvamangala and R. V. Kulkarni, “Convolutional neural networks in medical image understanding: a survey,†Evolutionary
Intelligence, vol. 15, no. 1, pp. 1–22, 2022, doi: 10.1007/s12065-020-00540-3.
[14] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, A survey of the recent architectures of deep convolutional neural networks.
Springer Netherlands, 2020, vol. 53, no. 8.
[15] Purwono, A. Ma’arif, W. Rahmaniar, H. I. K. Fathurrahman, A. Z. K. Frisky, and Q. M. U. Haq, “Understanding of Convolutional
Neural Network (CNN): A Review,†International Journal of Robotics and Control Systems, vol. 2, no. 4, pp. 739–748,
2022, doi: 10.31763/ijrcs.v2i4.888.
[16] S. Singh and D. Schicker, “Seven Basic Expression Recognition Using ResNet-18,†pp. 1–3, 2021.
[17] D. Sinha and M. El-Sharkawy, “Thin MobileNet: An Enhanced MobileNet Architecture,†2019 IEEE 10th Annual Ubiquitous
Computing, Electronics and Mobile Communication Conference, UEMCON 2019, pp. 0280–0285, 2019, doi: 10.1109/UEMCON47517.2019.8993089.
[18] D. Gupta, A. Gupta, R. Gandhi, P. Vishwavidyalaya, and S. S. Gupta, “Identification of Alzheimer’s disease from MRI image
employing a probabilistic deep learning-based approach and the VGG16,†2023.
[19] W. Gong, X. Zhang, B. Deng, and X. Xu, “Palmprint recognition based on convolutional neural network-alexnet,†Proceedings
of the 2019 Federated Conference on Computer Science and Information Systems, FedCSIS 2019, vol. 18, pp. 313–316, 2019,
doi: 10.15439/2019F248.
[20] N. S. Shadin, S. Sanjana, and N. J. Lisa, “COVID-19 Diagnosis from Chest X-ray Images Using Convolutional Neural Network(
CNN) and InceptionV3,†2021 International Conference on Information Technology, ICIT 2021 - Proceedings, vol. 3, no.
September 2012, pp. 799–804, 2021, doi: 10.1109/ICIT52682.2021.9491752.
[21] G. S. Nugraha, M. I. Darmawan, and R. Dwiyansaputra, “Comparison of CNN’s Architecture GoogleNet, AlexNet, VGG-16,
Lenet -5, Resnet-50 in Arabic Handwriting Pattern Recognition,†Kinetik: Game Technology, Information System, Computer
Network, Computing, Electronics, and Control, vol. 4, no. 2, 2023, doi: 10.22219/kinetik.v8i2.1667.
[22] Z. Zhong, M. Zheng, H. Mai, J. Zhao, and X. Liu, “Cancer image classification based on DenseNet model,†Journal of Physics:
Conference Series, vol. 1651, no. 1, 2020, doi: 10.1088/1742-6596/1651/1/012143.
[23] G. Huang, Z. Liu, G. Pleiss, L. Van Der Maaten, and K. Q. Weinberger, “Convolutional Networks with Dense Connectivity,â€
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 12, pp. 8704–8716, 2022, doi:
10.1109/TPAMI.2019.2918284.
[24] Z. Shi, M. Chen, and Z. Wu, “Hyperspectral Image Classification Based on Dual-Scale Dense Network with Efficient Channel
Attentional Feature Fusion,†Electronics (Switzerland), vol. 12, no. 13, 2023, doi: 10.3390/electronics12132991.
[25] S. A. Albelwi, “Deep Architecture based on DenseNet-121 Model for Weather Image Recognition,†International Journal of
Advanced Computer Science and Applications, vol. 13, no. 10, pp. 559–565, 2022, doi: 10.14569/IJACSA.2022.0131065.
[26] E. E.-D. Hemdan, M. A. Shouman, and M. E. Karar, “COVIDX-Net: A Framework of Deep Learning Classifiers to Diagnose
COVID-19 in X-Ray Images,†2020.
[27] M. M. Hasan, H. Ali, M. F. Hossain, and S. Abujar, “Preprocessing of Continuous Bengali Speech for Feature Extraction,†2020
11th International Conference on Computing, Communication and Networking Technologies, ICCCNT 2020, pp. 1–4, 2020,
doi: 10.1109/ICCCNT49239.2020.9225469.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Arief Hermawan, Adityo Permana Wibowo, Akmal Setiawan Wijaya, The Improvement of Artificial Neural Network Accuracy Using Principle Component Analysis Approach , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Muhammad Furqan Nazuli, Muhammad Fachrurrozi, Muhammad Qurhanul Rizqie, Abdiansah Abdiansah, Muhammad Ikhsan, A Image Classification of Poisonous Plants Using the MobileNetV2 Convolutional Neural Network Model Method , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Imam Fahrur Rozi, Ahmadi Yuli Ananta, Endah Septa Sintiya, Astrifidha Rahma Amalia, Yuri Ariyanto, Arin Kistia Nugraeni, Analyzing the Application of Optical Character Recognition: A Case Study in International Standard Book Number Detection , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Bobby Poerwanto, Fajriani Fajriani, Resilient Backpropagation Neural Network on Prediction of Poverty Levels in South Sulawesi , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 1 (2020)
- B. Herawan Hayadi, I Gede Iwan Sudipa, Agus Perdana Windarto, Model Peramalan Artificial Neural Network pada Peserta KB Aktif Jalur Pemerintahan menggunakan Artificial Neural Network Back-Propagation , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Aris Tjahyanto, Faisal Johan Atletiko, Peningkatan Kinerja Pengklasifikasi Objek Bawah Laut dengan Deep Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Agung Teguh Wibowo Almais, Cahyo Crysdian, Khadijah Fahmi Hayati Holle, Akbar Roihan, Smart Assessment menggunakan Backpropagation Neural Network , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Achmad Lukman, Wahju Tjahjo Saputro, Erni Seniwati, Improving Performance Convolutional Neural Networks Using Modified Pooling Function , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Didih Rizki Chandranegara, Faras Haidar Pratama, Sidiq Fajrianur, Moch Rizky Eka Putra, Zamah Sari, Automated Detection of Breast Cancer Histopathology Image Using Convolutional Neural Network and Transfer Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Susandri Susandri, Ahmad Zamsuri, Nurliana Nasution, Yoyon Efendi, Hiba Basim Alwan, The Mitigating Overfitting in Sentiment Analysis Insights from CNN-LSTM Hybrid Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Imam Riadi, Abdul Fadlil, Muhammad Amirul Mu'min, OWASP Framework-based Network Forensics to Analyze the SQLi Attacks on Web Servers , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Alya Masitha, Muhammad Kunta Biddinika, Herman Herman, K Value Effect on Accuracy Using the K-NN for Heart Failure Dataset , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Joko Supriyanto, Abdul Fadlil, Sunardi Sunardi, Pengujian Kualitatif Aplikasi Informasi Gempa Bumi dalam Bentuk Suara untuk Tunanetra , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)