Quality Improvement for Invisible Watermarking using Singular Value Decomposition and Discrete Cosine Transform
DOI:
https://doi.org/10.30812/matrik.v23i3.3744Keywords:
Discrete Cosine Transform, Invisible Watermarking, Quality Improvement, Singular Value DecompositionAbstract
Image watermarking is a sophisticated method often used to assert ownership and ensure the integrity of digital images. This research aimed to propose and evaluate an advanced watermarking technique that utilizes a combination of singular value decomposition methodology and discrete cosine transformation to embed the Dian Nuswantoro University symbol as proof of ownership into digital images. Specific goals included optimizing the embedding process to ensure high fidelity of the embedded watermark and evaluating the fuzziness of the watermark to maintain the visual quality of the watermarked image. The methods used in this research were singular value decomposition and discrete cosine transformation, which are implemented because of their complementary strengths. Singular value decomposition offers robustness and stability, while discrete cosine transformation provides efficient frequency domain transformation, thereby increasing the overall effectiveness of the watermarking process. The results of this study showed the efficacy of the Lena image technique in gray scale having a mean square error of 0.0001, a high peak signal-to-noise ratio of 89.13 decibels (dB), a universal quality index of 0.9945, and a similarity index structural of 0.999. These findings confirmed that the proposed approach maintains image quality while providing watermarking resistance. In conclusion, this research contributed a new watermarking technique designed to verify institutional ownership in digital images, specifically benefiting Dian Nuswantoro University. It showed significant potential for wider application in digital rights management.
Downloads
References
[2] D. Raijada, K. Wac, E. Greisen, J. Rantanen, and N. Genina, “Integration of personalized drug delivery systems into digital health,†Adv Drug Deliv Rev, vol. 176, pp. 113857–113857, Sep. 2021, doi: 10.1016/j.addr.2021.113857.
[3] P. Aberna and L. Agilandeeswari, “Digital image and video watermarking: methodologies, attacks, applications, and future directions,†Multimed Tools Appl, vol. 83, no. 2, pp. 5531–5591, Jan. 2024, doi: 10.1007/s11042-023-15806-y.
[4] S. Gupta, K. Saluja, V. Solanki, K. Kaur, P. Singla, and M. Shahid, “Efficient methods for digital image watermarking and information embedding,†Measurement: Sensors, vol. 24, p. 100520, Dec. 2022, doi: 10.1016/j.measen.2022.100520.
[5] J. Patel, D. Tailor, K. Panchal, S. Patel, R. Gupta, and M. Shah, “All phase discrete cosine biorthogonal transform versus discrete cosine transform in digital watermarking,†Multimed Tools Appl, vol. 83, no. 6, pp. 16121–16138, Jul. 2023, doi: 10.1007/s11042-023-16106-1.
[6] Z. Yuan, Q. Su, D. Liu, and X. Zhang, “A blind image watermarking scheme combining spatial domain and frequency domain,†Visual Computer, vol. 37, no. 7, pp. 1867–1881, Jul. 2021, doi: 10.1007/s00371-020-01945-y.
[7] F. Yasmeen and M. S. Uddin, “An Efficient Watermarking Approach Based on LL and HH Edges of DWT–SVD,†SN Comput Sci, vol. 2, no. 2, pp. 1–16, Apr. 2021, doi: 10.1007/s42979-021-00478-y.
[8] A. Zear and P. K. Singh, “Secure and robust color image dual watermarking based on LWT-DCT-SVD,†Multimed Tools Appl, vol. 81, no. 19, pp. 26721–26738, Aug. 2022, doi: 10.1007/s11042-020-10472-w.
[9] A. Ray and S. Roy, “Recent trends in image watermarking techniques for copyright protection: a survey,†Int J Multimed Inf Retr, vol. 9, no. 4, pp. 249–270, Dec. 2020, doi: 10.1007/s13735-020-00197-9.
[10] S. M. Darwish and L. D. S. Al-Khafaji, “Dual Watermarking for Color Images: A New Image Copyright Protection Model based on the Fusion of Successive and Segmented Watermarking,†Multimed Tools Appl, vol. 79, no. 9–10, pp. 6503–6530, Mar. 2020, doi: 10.1007/s11042-019-08290-w.
[11] A. O. Mohammed, H. I. Hussein, R. J. Mstafa, and A. M. Abdulazeez, “A blind and robust color image watermarking scheme based on DCT and DWT domains,†Multimed Tools Appl, vol. 82, no. 21, pp. 32855–32881, Sep. 2023, doi: 10.1007/s11042-023-14797-0.
[12] A. Durafe and V. Patidar, “Development and analysis of IWT-SVD and DWT-SVD steganography using fractal cover,†Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 7, pp. 4483–4498, Jul. 2022, doi: 10.1016/j.jksuci.2020.10.008.
[13] T. Khanam, P. K. Dhar, S. Kowsar, and J.-M. Kim, “SVD-Based Image Watermarking Using the Fast Walsh-Hadamard Transform, Key Mapping, and Coefficient Ordering for Ownership Protection,†Symmetry (Basel), vol. 12, no. 1, pp. 1–20, Dec. 2019, doi: 10.3390/sym12010052.
[14] Y. Xue, K. Mu, Y. Wang, Y. Chen, P. Zhong, and J. Wen, “Robust Speech Steganography Using Differential SVD,†IEEE Access, vol. 7, pp. 153724–153733, 2019, doi: 10.1109/ACCESS.2019.2948946.
[15] Mohammed Hassan Abd and Osamah Waleed Allawi, “Secured Mechanism Towards Integrity of Digital Images Using DWT, DCT, LSB and Watermarking Integrations,†Ibn AL-Haitham Journal For Pure and Applied Sciences, vol. 36, no. 2, pp. 454–468, Apr. 2023, doi: 10.30526/36.2.3088.
[16] M. Begum, J. Ferdush, and M. S. Uddin, “A Hybrid robust watermarking system based on discrete cosine transform, discrete wavelet transform, and singular value decomposition,†Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 8, pp. 5856–5867, Sep. 2022, doi: 10.1016/j.jksuci.2021.07.012.
[17] E. A. Sofyan, C. A. Sari, H. Rachmawanto, and R. D. Cahyo, “High-Quality Evaluation for Invisible Watermarking Based on Discrete Cosine Transform (DCT) and Singular Value Decomposition (SVD),†Advance Sustainable Science, Engineering and Technology (ASSET), vol. 6, no. 1, 2024, doi: 10.26877/asset.v6i1.17186.
[18] J. Khandelwal, V. K. Sharma, D. Singh, and A. Zaguia, “Dwt-svd based image steganography using threshold value encryption method,†Computers, Materials and Continua, vol. 72, no. 2, pp. 3299–3312, 2022, doi: 10.32604/cmc.2022.023116.
[19] D. R. I. M. Setiadi, “PSNR vs SSIM: imperceptibility quality assessment for image steganography,†Multimed Tools Appl, vol. 80, no. 6, pp. 8423–8444, Mar. 2021, doi: 10.1007/s11042-020-10035-z.
[20] U. Sara, M. Akter, and M. S. Uddin, “Image Quality Assessment through FSIM, SSIM, MSE and PSNR—A Comparative Study,†Journal of Computer and Communications, vol. 07, no. 03, pp. 8–18, 2019, doi: 10.4236/jcc.2019.73002.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Susandri Susandri, Ahmad Zamsuri, Nurliana Nasution, Yoyon Efendi, Hiba Basim Alwan, The Mitigating Overfitting in Sentiment Analysis Insights from CNN-LSTM Hybrid Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Mochamad Wahyudi, Firmansyah Firmansyah, Analisis Performa Open Shortest Path First Load Balancing dengan Metode Cost Manipulation , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Faisal Reza Pradhana, Ilham Mufandi, Aziz Musthafa, Dian Afif Arifah, Khairul Munzilin Al Kahfi, Implementation of Conversational Artificial Intelligence in a3-Dimensional Game onWaste Impact , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Zilvanhisna Emka Fitri, Lalitya Nindita Sahenda, Sulton Mubarok, Abdul Madjid, Arizal Mujibtamala Nanda Imron, Implementing K-Nearest Neighbor to Classify Wild Plant Leaf as a Medicinal Plants , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Dimas Afryzal Hanan, Ario Yudo Husodo, Regania Pasca Rassy, Sentiment Study of ChatGPT on Twitter Data with Hybrid K-Means and LSTM , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- M. Khairul anam, Esi Tri Emerlada, Susi Erlinda, Tashid Tashid, Torkis Nasution, The Application of Usability Testing to Analyze the Quality of Android-Based Acupressure Smart Chair Applications , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Baiq Rima Mozarita Erdiani, Aryo Yudo Husodo, Ida Bagus Ketut Widiartha, Novel Application of K-Means Algorithm for Unique Sentiment Clustering in 2024 Korean Movie Reviews on TikTok Platform , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Michelle Cantika Pontoan, Jay Idoan SIhotang, Erienika Lompoliu, Information Security Analysis of Online Education Management System using Information Technology Infrastructure Library Version 3 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Herman Kabetta, Hermawan Setiawan, Fetty Amelia, Muhammad Qolby Fawzan, Seamless Security on Mobile Devices Textual Password Quantification Model Based Usability Evaluation of Secure Rotary Entry Pad Authentication , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Helen Sastypratiwi, Yulianti Yulianti, Hafiz Muhardi, Desepta Isna Ulumi, Incorporating User Experience Evaluation into Application Design for Optimal Usability , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
You may also start an advanced similarity search for this article.
.png)











