Sentiment Analysis of e-Government Service Using the Naive Bayes Algorithm
DOI:
https://doi.org/10.30812/matrik.v23i2.3272Keywords:
Classfier, Google Playstore, Naïve Bayes, Opinion Mining, Sentiment AnalysisAbstract
E-Government which involves the use of communication and information technology to provide Public services have three obstacles. One of these obstacles is the implementation of e-Government by autonomous regional governments is still carried out individually. Apart from that, implementing the website regions are also not supported by efficient management systems and work processes, this is partly the case This is largely due to the lack of preparation of regulations, procedures and limited resources man. Apart from that, many local governments consider implementing e-Government only involves developing local government websites. More precisely, the implementation of e-Government It is only limited to the maturity stage and ignores the three other important stages that need to be completed. The aim of this research is to determine the level of public approval for government application services. This research uses the Naive Bayes Classifier approach as the methodology. The data sources used in this research consist of user reviews and comments obtained from Google Play Store. The results of this investigation produce a level of precision The highest is achieving a score of 83%. Additionally it shows an accuracy rate of 83%,level
completeness is 100%, and F-measure is 90.7%.
Downloads
References
[2] A. I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes,†JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 785–795, 2022, doi: 10.35957/jatisi.v9i2.1835.
[3] G. Y. Iskandarli, “Applying Clustering and Topic Modeling to Automatic Analysis of Citizens’ Comments in EGovernment,†Int. J. Inf. Technol. Comput. Sci., vol. 12, no. 6, pp. 1–10, 2020, doi: 10.5815/ijitcs.2020.06.01.
[4] A. Akram, N. Risal, D. Rezky, and A. Sulaiman, “Classification of Sentiment Analysis and Community Opinion Modeling Topics for Application of ICT in Government Operations,†vol. 5, no. 1, pp. 35–44, 2023, doi: https://doi.org/10.55151/ijeedu.v5i1.99.
[5] I. S. Jami and A. S. Zubair, “Semantic Web based E-Government System,†Indian J. Sci. Technol., vol. 11, no. 44, pp. 1–6, 2018, doi: 10.17485/ijst/2018/v11i44/132332.
[6] D. Joshi, M. Khalegaonkar, M. Lohikpure, P. Maan, and R. A. Deshmukh, “Sentimental Analysis on E-Governance,†Int. J. Innov. Res. Sci. Eng., vol. Vol.3, no. Issue 05, pp. 1–9, 2017, doi: http://ijirse.com/wp-content/upload/2017/03/PY2087ijirse.pdf.
[7] M. R. Fahlevvi, “Analisis Sentimen Terhadap Ulasan Aplikasi Pejabat Pengelola Informasi Dan Dokumentasi Kementerian Dalam Negeri Republik Indonesia Di Google Playstore Menggunakan Metode Support Vector Machine,†J. Teknol. dan Komun. Pemerintah., vol. 4, no. 1, pp. 1–13, 2022, doi: 10.33701/jtkp.v4i1.2701.
[8] A. Filemon, H. Kaban, and N. Yudistira, “Analisis Sentimen Aplikasi E-Goverment berdasarkan Ulasan Pengguna menggunakan Metode Maximum Entropy dan Seleksi Fitur Mutual Information,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 4, pp. 1452–1458, 2021, doi: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/8877.
[9] M. K. Anam, B. N. Pikir, and M. B. Firdaus, “Penerapan Na ̈ıve Bayes Classifier, K-Nearest Neighbor (KNN) dan Decision Tree untuk Menganalisis Sentimen pada Interaksi Netizen danPemeritah,†MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 1, pp. 139–150, 2021, doi: 10.30812/matrik.v21i1.1092.
[10] S. Abdelgaber, S. Abdel Gaber, and B. Kazim, “A Proposed Road Map To Enhance E-Government Services: Kuwait Case Study,†Researchgate.Net, no. December 2019, 2019, doi: https://www.researchgate.net/publication/339237461_A_Proposed_Road_Map_To_Enhance_E-Government_Services_Kuwait_Case_Study.
[11] R. I. Syah, Hoiriyah, and M. Walid, “Analisis Sentimen Pengguna Media Sosial Terhadap Aplikasi M-Health Peduli Lindungi dengan Metode Lexicon Based dan Naive Bayes,†vol. 3, no. 2, pp. 54–60, 2020, doi: http://dx.doi.org/10.21927/ijubi.v6i1.3275.
[12] T. Tinaliah and T. Elizabeth, “Analisis Sentimen Ulasan Aplikasi PrimaKu Menggunakan Metode Support Vector Machine,†JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 4, pp. 3436–3442, 2022, doi: 10.35957/jatisi.v9i4.3586.
[13] R. Apriani et al., “Analisis Sentimen dengan Naïve Bayes Terhadap Komentar Aplikasi Tokopedia,†J. Rekayasa Teknol. Nusa Putra, vol. 6, no. 1, pp. 54–62, 2019.
[14] A. Faesal, A. Muslim, A. H. Ruger, and K. Kusrini, “Sentimen Analisis Terhadap Komentar Konsumen Terhadap Produk Penjualan Toko Online Menggunakan Metode K-Means,†MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 19, no. 2, pp. 207–213, 2020, doi: 10.30812/matrik.v19i2.640.
[15] I. S. K. Idris, Y. A. Mustofa, and I. A. Salihi, “Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine (SVM),†Jambura J. Electr. Electron. Eng., vol. 5, no. 1, pp. 32–35, 2023, doi: 10.37905/jjeee.v5i1.16830.
[16] I. Di Estika, I. Darmawan, and O. N. Pratiwi, “Analisis Sentimen Ulasan Aplikasi Buka Lapak Untuk Peningkatan Layanan Menggunakan Algoritma Naive Bayes,†vol. 8, no. 5, pp. 4367–4376, 2021, doi: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/14676.
[17] S. Surohman, S. Aji, R. Rousyati, and F. F. Wati, “Analisa Sentimen Terhadap Review Fintech Dengan Metode Naive Bayes Classifier Dan K- Nearest Neighbor,†EVOLUSI J. Sains dan Manaj., vol. 8, no. 1, pp. 93–105, 2020, doi: 10.31294/evolusi.v8i1.7535.
[18] A. Athallah Muhammad et al., “Analisis Sentimen Pengguna Aplikasi Dana Berdasarkan Ulasan Ada Google Play Menggunakan Metode Support Vector Machine,†pp. 194–204, 2022, doi: https://conference.upnvj.ac.id/index.php/senamika/article/view/2171/1660.
[19] I. Atoum, “A novel framework for measuring software quality-in-use based on semantic similarity and sentiment analysis of software reviews,†J. King Saud Univ. - Comput. Inf. Sci., vol. 32, no. 1, pp. 113–125, 2020, doi: 10.1016/j.jksuci.2018.04.012.
[20] M. K. Khoirul Insan, U. Hayati, and O. Nurdiawan, “Analisis Sentimen Aplikasi Brimo Pada Ulasan Pengguna Di Google Play Menggunakan Algoritma Naive Bayes,†JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 478–483, 2023, doi: 10.36040/jati.v7i1.6373.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Imamah Imamah, Akhmad Siddiqi, Penerapan Teorema Bayes untuk Mendiagnosa Penyakit Telinga Hidung Tenggorokan (THT) , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Vikky Aprelia Windarni, Adi Setiawan, Atina Rahmatalia, Comparison of the Karney Polygon Method and the Shoelace Method for Calculating Area , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Annisa’ul Mubarokah, Rita Ambarwati, Dedy Dedy, Mashhura Toirхonovna Alimova, Unsafe Conditions Identification Using Social Networks in Power Plant Safety Reports , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Magdalena Ariance Ineke Pakereng, Alz Danny Wowor, Yos Richard Beeh, Felix David, Erwien Christianto, Vincent Exelcio Susanto, Claudio Canavaro, Square Transposition Method with Adaptive Key Flexibility and Strong Diffusion Performance , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Firman Noor Hasan, Achmad Sufyan Aziz, Yos Nofendri, Utilization of Data Mining on MSMEs using FP-Growth Algorithm for Menu Recommendations , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Bambang Krismono Triwijoyo, SEGMENTASI CITRA PEMBULUH DARAH RETINA MENGGUNAKAN METODE DETEKSI GARIS MULTI SKALA , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 15 No. 1 (2015)
- Mamluatul Hani'ah, Moch Zawaruddin Abdullah, Wilda Imama Sabilla, Syafaat Akbar, Dikky Rahmad Shafara, Google Trends and Technical Indicator based Machine Learning for Stock Market Prediction , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Nella Rosa Sudianjaya, Chastine Fatichah, Segmentation and Classification of Breast Cancer Histopathological Image Utilizing U-Net and Transfer Learning ResNet50 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Yuniansyah Yuniansyah, Andri Saputra, PENGEMBANGAN MULTIMEDIA PEMBELAJARAN UNTUK MATAKULIAH GRAFIK KOMPUTER MENGGUNAKAN METODE ADDIE , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 17 No. 1 (2017)
- Akmal Setiawan Wijaya, Dhomas Hatta Fudholi, Ahmad R. Pratama, A computational approach in analyzing the empathy to online donations during COVID-19 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Arny Lattu, Danny Manongga, Ade Iriani, Ekstraksi Pengetahuan pada Penurunan Minat Mahasiswa Mengikuti Bursa Kerja Menggunakan Soft System Methodology , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
.png)











