Automatic Door Access Model Based on Face Recognition using Convolutional Neural Network
DOI:
https://doi.org/10.30812/matrik.v22i1.2350Keywords:
Automatic door access, Amason face recognition, Convolutional Neural Network, Facial recognition, RaspberryAbstract
Automatic door access technology by utilizing biometrics such as fingerprints, retinas and facial structures is constantly evolving. The use of masks during the Covid-19 Pandemic and post-pandemic has become an obligation wherever humans are active. The study aimed to create an automated door access model using Convolutional Neural Network (CNN) algorithms and Amazon Rekognition as cloud-based software. The CNN algorithm is applied to classify faces wearing masks or not wearing masks. The CNN architecture model uses sequential, convolution2D, max polling 2D, flatten dan dense. The hardware includes the Raspberry Pi, USB Webcam, Relay, and Magnetic Doorlock. The test results were obtained from the results of the accuracy plot on the Convolutional Neural Network model with an accuracy rate of 99% at an epoch value of 8 with a learning time of 67 seconds.
Downloads
References
[2] M. Abdul, R. Irham, and D. A. Prasetya, “Prototipe Pendeteksi Masker Pada Ruangan Wajib Masker untuk Kendali Pintu Otomatis Berbasis Deep Learning Sebagai Pencegahan Penularan Covid-19,†Prototipe Pendeteksi Masker Pada Ruangan Wajib Masker Untuk Kendali Pintu Otomatis Berbasis Deep Learning Sebagai Pencegahan Penularan Covid-19, pp. 47–55, 2020.
[3] H. W. N. Agusti and B. A. Gisela, “Pengenalan Wajah dengan Menggunakan Smartphone : Sistematik Review,†Journal of Indonesian Forensic and Legal Medicine, vol. 2, no. 2, pp. 156–163, 2020.
[4] A. Apriani, H. Zakiyudin, and K. Marzuki, “Penerapan Algoritma Cosine Similarity dan Pembobotan TF-IDF System Penerimaan Mahasiswa Baru pada Kampus Swasta,†Jurnal Bumigora Information Technology (BITe), vol. 3, no. 1, pp. 19–27, 2021, doi: 10.30812/bite.v3i1.1110.
[5] I. F. Ashari, M. D. Satria, and M. Idris, “Parking System Optimization Based on IoT using Face and Vehicle Plat Recognition via Amazon Web Service and ESP-32 CAM,†Computer Engineering and Applications Journal, vol. 11, no. 2, pp. 137–153, 2022, doi: 10.18495/comengapp.v11i2.409.
[6] M. F. Aslan, K. Sabanci, A. Durdu, and M. F. Unlersen, “COVID-19 diagnosis using state-of-the-art CNN architecture features and Bayesian Optimization,†Computers in Biology and Medicine, 2020.
[7] M. N. Baay, A. N. Irfansyah, and M. Attamimi, “Sistem Otomatis Pendeteksi Wajah Bermasker Menggunakan Deep Learning,†Jurnal Teknik ITS, vol. 10, no. 1, pp. 64–70, Aug. 2021, doi: 10.12962/j23373539.v10i1.59790.
[8] A. H. Bachtiar, P. P. Surya, and R. P. Astutik, “Rancang Bangun Dual Keamanan Sistem Pintu Rumah Menggunakan Pengenalan Wajah dan Sidik Jari Berbasis Iot (Internet of Things),†Jurnal POLEKTRO: Jurnal Power Elektronik, vol. 1, no. 1, pp. 102–107, 2022.
[9] A. D, “Face Recognition using Machine Learning Algorithms,†JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, vol. 14, no. 3, Jun. 2019, doi: 10.26782/jmcms.2019.06.00017.
[10] P. Elechi, E. Okowa, and U. Ekwueme, “Facial Recognition Based Smart Door Lock System,†FUPRE Journal of Scientific and Industrial Research, vol. 6, no. 2, pp. 95–105, 2022.
[11] A. Febriansyah, J. Saputra, and P. Desvirati, “Alat Pendeteksi Suhu Tubuh dan Wajah (Kebutuhan Bukti Kehadiran) Berbasis Data,†Manutech : Jurnal Teknologi Manufaktur, vol. 14, no. 01, pp. 1–6, 2022.
[12] Gaurav Dhiman, Srihari. K, Ramesh. R, and Udayakumar. E, “An Innovative Approach for Face Recognition Using Raspberry Pi,†Artificial Intelligence Evolution, vol. 10, no. 1, pp. 102–107, Aug. 2020, doi: 10.37256/aie.12202062.
[13] H. Hairani, A. S. Suweleh, and D. Susilowaty, “Penanganan Ketidak Seimbangan Kelas Menggunakan Pendekatan Level Data,†MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 20, no. 1, pp. 109–116, 2020, doi: 10.30812/matrik.v20i1.846.
[14] A. Hassouneh, A. M. Mutawa, and M. Murugappan, “Development of a Real-Time Emotion Recognition System Using Facial Expressions and EEG based on machine learning and deep neural network methods,†Informatics in Medicine Unlocked, vol. 20, no. 1, pp. 2–9, 2020, doi: 10.1016/j.imu.2020.100372.
[15] S. E. Oltean, “Mobile Robot Platform with Arduino Uno and Raspberry Pi for Autonomous Navigation,†Procedia Manufacturing, vol. 32, pp. 572–577, 2019, doi: 10.1016/j.promfg.2019.02.254.
[16] R. R. Ramdhani, R. I. Adam, and A. A. Ridha, “Implementasi Deep Learning Untuk Deteksi Masker Deep Learning Implementation for Face Mask Detection,†Journal of Information Technology and Computer Science (INTECOMS), vol. 4, no. 2, p. 2021, 2021.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Muhammad Rizki, Arief Hermawan, Donny Avianto, Learning Accuracy with Particle Swarm Optimization for Music Genre Classification Using Recurrent Neural Networks , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Jelita Asian, Dimas Erlangga, Media Ayu, Data Exfiltration Anomaly Detection on Enterprise Networks using Deep Packet Inspection , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Jihadil Qudsi S., Anthony Anggrawan, EVALUASI PRODUK PEMBELAJARAN MULTIMEDIA (PELIN) EVALUATION OF LEARNING MULTIMEDIA PRODUCT (PELIN) , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 16 No. 1 (2016)
- Robby Rizky, Zaenal Hakim, Sri Setiyowati, Susilawati susilawati, Ayu Mira Yunita, Development of the Multi-Channel Clustering Hierarchy Method for Increasing Performance in Wireless Sensor Network , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Raisul Azhar, ANALISA PERBANDINGAN PENERAPAN PBR DAN NON PBR PADA PROTOCOL OSPF UNTUK KONEKSI INTERNET , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 15 No. 1 (2015)
- Hartono, Khusnul Khotimah, Rokin Maharjan, Improving Detection Accuracy of Brute-Force Attacks on MariaDB Using Standard Isolation Forest: A Comparative Analysis with RotatedVariant , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 25 No. 1 (2025)
- sri suharti, Anton Yudhana, Imam Riadi, Forensik Jaringan DDoS menggunakan Metode ADDIE dan HIDS pada Sistem Operasi Proprietary , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Annisa’ul Mubarokah, Rita Ambarwati, Dedy Dedy, Mashhura Toirхonovna Alimova, Unsafe Conditions Identification Using Social Networks in Power Plant Safety Reports , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Mochamad Wahyudi, Firmansyah Firmansyah, Analisis Performa Open Shortest Path First Load Balancing dengan Metode Cost Manipulation , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Surahmat Surahmat, Alfred Tenggono, Analisis Perbandingan Kinerja Layanan Infrastructure As A Service Cloud Computing Pada Proxmox dan Xenserver , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
You may also start an advanced similarity search for this article.
.png)











