Implementation of Single Linked on Machine Learning for Clustering Student Scientific Fields
DOI:
https://doi.org/10.30812/matrik.v22i1.2337Keywords:
Clustering, Euclidean, Machine Learning, Single Linkage, Scientific FieldsAbstract
Machine Learning in classifying scientific fields according to the competence of students. Currently STMIK Triguna Dharma is quite difficult to map the scientific fields that will be used by students in submitting titles, so that the results of the thesis made are less than optimal. For this reason, it is necessary to map this concentration to assist students in completing theses through specialization classes. The Mechanical Learning technique used in solving this problem is to use the Single Linkage Technique. The process of testing the method begins with determining the standard data used and then looking for the proximity value using Euclidean so that later cluster results will be obtained from mapping scientific fields. From the Single Linkage Technique process that has been carried out, several cluster results will be obtained, namely clusters that map groups of STMIK Triguna Dharma students who have competence and clusters that map groups of STMIK Triguna Dharma students who lack competence. From the results of this grouping, the institution will make specialization classes according to the resulting cluster. Thus creating a specialization class that is in accordance with the competencies possessed by STMIK Triguna Dharma students
Downloads
References
[2] U. Maheshwera et al., “Machine Learning with Applications Machine learning and statistical approach in modeling and optimization of surface roughness in wire electrical discharge machining,†Machine Learning with Applications, vol. 6, no. May, pp. 1–11, 2021, doi: 10.1016/j.mlwa.2021.100099.
[3] M. R. Bachute, P. D. Electronics, I. L. Officer, and M. S. M. S. A. Electronics, “Machine Learning with Applications Autonomous Driving Architectures : Insights of Machine Learning and Deep Learning Algorithms,†Machine Learning with Applications, vol. 6, no. March, pp. 1–25, 2021, doi: 10.1016/j.mlwa.2021.100164.
[4] J. Chai, H. Zeng, A. Li, and E. W. T. Ngai, “Machine Learning with Applications Deep learning in computer vision : A critical review of emerging techniques and application scenarios,†Machine Learning with Applications, vol. 6, no. March, pp. 1–13, 2021, doi: 10.1016/j.mlwa.2021.100134.
[5] L. Ganda, R. Putra, and A. Anggrawan, “Pengelompokan Penerima Bantuan Sosial Masyarakat dengan Metode K-Means,†Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer, vol. 21, no. 1, pp. 205–214, 2021, doi: 10.30812/matrik.v21i1.1554.
[6] T. R. P. Bishop, S. Von Hinke, B. Hollingsworth, A. A. Lake, H. Brown, and T. Burgoine, “Machine Learning with Applications Automatic classification of takeaway food outlet cuisine type using machine ( deep ) learning,†Machine Learning with Applications, vol. 6, no. July, pp. 1–11, 2021, doi: 10.1016/j.mlwa.2021.100106.
[7] L. A. Bugnon et al., “Machine Learning with Applications Deep Learning for the discovery of new pre-miRNAs : Helping the fight against COVID-19,†Machine Learning with Applications, vol. 6, no. March, pp. 1–8, 2021, doi: 10.1016/j.mlwa.2021.100150.
[8] I. F. Yuliati and P. R. Sihombing, “Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia Implementation of Machine Learning Method in Risk Classification on Low Birth weight in Indonesia,†vol. 20, no. 2, pp. 417–426, 2021, doi: 10.30812/matrik.v20i2.1174.
[9] S. Laqtib, K. El Yassini, and M. L. Hasnaoui, “A technical review and comparative analysis of machine learning techniques for intrusion detection systems in MANET,†International Journal of Electrical and Computing Engineering (IJECE), vol. 10, no. 3, pp. 2701–2709, 2020, doi: 10.11591/ijece.v10i3.pp2701-2709.
[10] T. R. S. Mary and S. Sebastian, “Predicting heart ailment in patients with varying number of features using data mining techniques,†International Journal of Electrical and Computer Engineering (IJECE), vol. 9, no. 4, pp. 2675–2681, 2019, doi: 10.11591/ijece.v9i4.pp2675-2681.
[11] P. Subarkah, E. P. Pambudi, S. Oktaviani, and N. Hidayah, “Perbandingan Metode Klasifikasi Data Mining untuk Nasabah Bank Telemarketing,†MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 20, no. 1, pp. 139–148, 2020, doi: 10.30812/matrik.v20i1.826.
[12] E. Asani, H. Vahdat-nejad, and J. Sadri, “Machine Learning with Applications Restaurant recommender system based on sentiment analysis,†Machine Learning with Applications, vol. 6, no. July, p. 100114, 2021, doi: 10.1016/j.mlwa.2021.100114.
[13] Fitra, “Perbandingan Algoritme Machine Learning Untuk Memprediksi,†vol. 6, no. 5, pp. 543–548, 2019, doi: 10.25126/jtiik.2019611755.
[14] R. Subramanian, R. Rajesh, and S. Singh, “Machine Learning with Applications White-box Machine learning approaches to identify governing equations for overall dynamics of manufacturing systems : A case study on distillation column,†Machine Learning with Applications, vol. 3, no. December 2020, p. 100014, 2021, doi: 10.1016/j.mlwa.2020.100014.
[15] R. R. Pratama, “Analisis Model Machine Learning Terhadap Pengenalan Aktifitas Manusia,†MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 19, no. 2, pp. 302–311, 2020.
[16] A. R. Riszky and M. Sadikin, “Data Mining Menggunakan Algoritma Apriori untuk Rekomendasi Produk bagi Pelanggan Data Mining using Apriori Algorithm for Product Recommendation for Customers,†Jurnal Teknologi dan Sistem Komputer, vol. 7, no. 3, pp. 103–108, 2019, doi: 10.14710/jtsiskom.7.3.2019.103-108.
[17] E. N. Osegi and E. F. Jumbo, “Machine Learning with Applications Comparative analysis of credit card fraud detection in Simulated Annealing trained Artificial Neural Network and Hierarchical Temporal Memory,†Machine Learning with Applications, vol. 6, no. June, pp. 1–10, 2021, doi: 10.1016/j.mlwa.2021.100080.
[18] K. Giri, T. Kr, and P. Sarkar, “Machine Learning with Applications ECR-DBSCAN : An improved DBSCAN based on computational geometry,†Machine Learning with Applications, vol. 6, no. July, p. 100148, 2021, doi: 10.1016/j.mlwa.2021.100148.
[19] E. Nsugbe, O. Obajemu, O. William, and I. Sanusi, “Machine Learning with Applications Enhancing care strategies for preterm pregnancies by using a prediction machine to aid clinical care decisions,†Machine Learning with Applications, vol. 6, no. July, pp. 1–11, 2021, doi: 10.1016/j.mlwa.2021.100110.
[20] M. Kempa and Y. Peng, “Machine Learning with Applications Machine learning algorithms for fraud prediction in property insurance : Empirical evidence using real-world microdata,†Machine Learning with Applications, vol. 5, no. July, pp. 1–14, 2021, doi: 10.1016/j.mlwa.2021.100074.
[21] P. C. Pendharkar, “Machine Learning with Applications Hybrid radial basis function DEA and its applications to regression , segmentation and cluster analysis problems,†Machine Learning with Applications, vol. 6, no. June, pp. 1–9, 2021, doi: 10.1016/j.mlwa.2021.100092.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Ahmad Zein Al Wafi, Febry Putra Rochim, Veda Bezaleel, Investigating Liver Disease Machine Learning Prediction Performancethrough Various Feature Selection Methods , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Edi Ismanto, Januar Al Amien, Vitriani Vitriani, A Comparison of Enhanced Ensemble Learning Techniques for Internet of Things Network Attack Detection , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Annisa Nurul Puteri, Suryadi Syamsu, Topan Leoni Putra, Andita Dani Achmad, Support Vector Machine for Predicting Candlestick Chart Movement on Foreign Exchange , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Muhammad Rizki, Arief Hermawan, Donny Avianto, Learning Accuracy with Particle Swarm Optimization for Music Genre Classification Using Recurrent Neural Networks , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Wahyu Styo Pratama, Didik Dwi Prasetya, Triyanna Widyaningtyas, Muhammad Zaki Wiryawan, Lalu Ganda Rady Putra, Tsukasa Hirashima, Performance Evaluation of Artificial Intelligence Models for Classification in Concept Map Quality Assessment , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Reo Wicaksono, Didik Dwi Prasetya, Ilham Ari Elbaith Zaeni, Nadindra Dwi Ariyanta, Tsukasa Hirashima, Machine Learning for Open-ended Concept Map Proposition Assessment: Impact of Length on Accuracy , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 25 No. 1 (2025)
- Pardomuan Robinson Sihombing, Istiqomatul Fajriyah Yuliati, Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Firda Yunita Sari, Maharani sukma Kuntari, Hani Khaulasari, Winda Ari Yati, Comparison of Support Vector Machine Performance with Oversampling and Outlier Handling in Diabetic Disease Detection Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Christofer Satria, Peter Wijaya Sugijanto, Anthony Anggrawan, I Nyoman Yoga Sumadewa, Aprilia Dwi Dayani, Rini Anggriani, Multi-Algorithm Approach to Enhancing Social Assistance Efficiency Through Accurate Poverty Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- F.ti Ayyu Sayyidul Laily, Didik Dwi Prasetya, Anik Nur Handayani, Tsukasa Hirashima, Revealing Interaction Patterns in Concept Map Construction Using Deep Learning and Machine Learning Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Lusiana Efrizoni, Sarjon Defit, Muhammad Tajuddin, Anthony Anggrawan, Komparasi Ekstraksi Fitur dalam Klasifikasi Teks Multilabel Menggunakan Algoritma Machine Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Abulwafa Muhammad, Sarjon Defit, Analyzing the use of Social Media by Fashion Designers with K-Means and C45 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
- Susandri susandri, Sarjon Defit, Fristi Riandari, Bosker Sinaga, Ekplorasi Timeline : Waktu Respon Pesan Terbaik WhatSapp Group “Gurauan kita STMIK Amik†, MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
.png)











