Utilization of Data Mining on MSMEs using FP-Growth Algorithm for Menu Recommendations
DOI:
https://doi.org/10.30812/matrik.v22i2.2166Keywords:
Data Mining, Fp-Growth, Menu Recommendation, MSMEAbstract
Existing transaction data is only recorded and stored as a sales transaction memorandum, so it has not been utilized optimally. The data is only stored and used as transaction history. The availability of a lot of data and having a pattern of sales transactions that are similar to MSME Cafe Over Limit will be utilized by using data mining science. This research uses the association rules method. Implementation of fp-growth to get item combinations. The purpose of this research is to make it easier for MSMEs to determine menu recommendations for customers. The fp-growth algorithm is used to process as many as 2038 transaction data with a minimum support value of 10%, while for a minimum confidence value of 50%. So that there are 3 rules, namely "if you order Mariam chocolate cheese milk then the customer will order Kopsus Overlimit", from this rule it will form a support value of 10.79%, using a confidence value of 54.19% and a lift ratio of 0.93. Furthermore "if you order Kopsus Overlimit then you will order tofu at grandma's house", from the rule it will produce a support value of 34.69%, with a specified confidence value of 59.76%, so the lift ratio value is 1.15. The last rule "if you order tofu at grandma's house, the customer orders Kopsus Overlimit", from the rule that occurs, the support value is 34.69%, with a confidence value of 66.7% and a lift ratio of 1.15. The results of the study found the two best rules, namely "if the customer orders over-limit Kopsus, he will order tofu at grandma's house" and "if he orders tofu at grandma's house, the customer orders over-limit Kopsus". Based on the results of the rules formed, it can be concluded that only two rules can be categorized as valid and can be used as a reference in food and beverage menu recommendations at MSME Cafe Over Limit. So the results of this study can be useful to be applied to MSMEs, especially in terms of menu recommendations.
Downloads
References
[2] V. Plotnikova, M. Dumas, and F. Milani, “Applying the CRISP-DM data mining process in the financial services industry: Elicitation of adaptation requirements,†Data Knowl. Eng., 2022.
[3] M. Shawkat, M. Badawi, S. El-ghamrawy, R. Arnous, and A. El-desoky, “An optimized FP-growth algorithm for discovery of association rules,†J. Supercomput., vol. 78, pp. 5479–5506, 2022.
[4] F. N. Hasan, “Implementasi Sistem Business Intelligence Untuk Data Penelitian di Perguruan Tinggi,†in Prosiding Seminar Nasional TEKNOKA 4, 2019, vol. 4, no. 2502, pp. I1–I10.
[5] F. N. Dhewayani, D. Amelia, D. N. Alifah, B. N. Sari, and M. Jajuli, “Implementasi K-Means Clustering untuk Pengelompokkan Daerah Rawan Bencana Kebakaran Menggunakan Model CRISP-DM,†J. Teknol. dan Inf., vol. 12, no. 1, pp. 76–89, 2022.
[6] J. Ferreira, “Café nation? Exploring the growth of the UK café industry,†AREA Ethics In/Of Geoghraphical Res., vol. 49, no. 1, pp. 69–76, 2016.
[7] A. Bartschat, M. Reischl, and R. Mikut, “Data Mining Tools,†Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 9, no. 4, pp. 1–14, 2019.
[8] P. S. Nishtala, T. yuan Chyou, F. Held, D. G. Le Couteur, and D. Gnjidic, “Association rules method and big data: Evaluating frequent medication combinations associated with fractures in older adults,†Pharmacoepidemiol. Drug Saf., vol. 27, no. 10, pp. 1123–1130, 2018.
[9] J. R. Chang, Y. S. Chen, C. K. Lin, and M. F. Cheng, “Advanced Data Mining of SSD Quality Based on FP-Growth Data Analysis,†Appl. Sci., vol. 11, no. 4, pp. 1–15, 2021.
[10] S. Kurniawan, W. Gata, and H. Wiyana, “Analisis Algoritma FP-Growth Untuk Rekomendasi Produk Pada Data Retail Penjualan Produk Kosmetik (Studi Kasus: MT Shop Kelapa Gading).,†Semin. Nas. Teknol. Inf. Dan Komun. 2018 (SENTIKA 2018), vol. 8, pp. 61–69, 2018.
[11] A. Maulana and A. A. Fajrin, “Penerapan Data Mining Untuk Analisis Pola Pembelian Konsumen Dengan Algoritma Fp-Growth Pada Data Transaksi Penjualan Spare Part Motor,†KLIK Kumpul. J. Ilmu Komput., vol. 5, no. 1, 2018.
[12] A. Salam, J. Zeniarja, W. Wicaksono, and L. Kharisma, “Pencarian Pola Asosiasi Untuk Penataan Barang Dengan Menggunakan Perbandingan Algoritma Apriori Dan Fp-Growth (Study Kasus Distro Epo Store Pemalang),†DInamik, vol. 23, no. 2, pp. 57–65, 2018.
[13] W. N. Setyo and S. Wardhana, “Implementasi Data Mining Pada Penjualan Produk Di Cv Cahaya Setya Menggunakan Algoritma Fp-Growth,†PETIR J. Pengkaj. dan Penerapan Tek. Inform., vol. 12, no. 1, pp. 54–63, 2019.
[14] G. Gunadi and D. I. Sensuse, “Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Buku Dengan Menggunakan Algoritma Apriori dan Frequent Pattern Growth(FP-Growth): Studi Kasus Percetakan PT.Gramedia,†Telemat. MKOM, vol. 4, no. 1, pp. 118–132, 2022.
[15] F. Sidik, I. Suhada, A. H. Anwar, and F. N. Hasan, “Analisis Sentimen Terhadap Pembelajaran Daring Dengan Algoritma Naive Bayes Classifier,†J. Linguist. Komputasional, vol. 5, no. 1, pp. 34–43, 2022.
[16] F. N. Hasan and M. Dwijayanti, “Analisis Sentimen Ulasan Pelanggan Terhadap Layanan Grab Indonesia Menggunakan Multinominal Naïve Bayes Classifier,†J. Linguist. Komputasional, vol. 4, no. 2, pp. 52–58, 2021.
[17] L. Shabtay, P. Fournier-viger, R. Yaari, and I. Dattner, “A Guided FP-Growth algorithm for mining multitude-targeted item-sets and class association rules,†Inf. Sci. (Ny)., vol. 553, pp. 353–375, 2020.
[18] V. Plotnikova, M. Dumas, and F. Milani, “Adapting the CRISP-DM Data Mining Process: A Case Study in the Financial Services Domain,†RCIS (International Conf. Res. Challenges Inf. Sci., vol. 415, 2021.
[19] D. Venkatesan, S. K. Kannan, M. Arif, M. Atif, and A. Ganeshan, “Sentimental Analysis of Industry 4.0 Perspectives Using a Graph-Based Bi-LSTM CNN Model,†Mob. Inf. Syst., vol. 2022, no. Special Issues, pp. 1–14, 2022.
[20] F. N. Hasan, F. Sidik, and P. Afikah, “Sentiment Analysis of Community Response on Cooking Oil Price Increase Policy with Naïve Bayes Classifier Algorithm,†J. Linguist. Komputasional, vol. 5, no. 2, pp. 71–76, 2022.
[21] R. M. Anggraeni, “Perbandingan Algoritma Apriori dan FP-Growth Untuk Perekomendasi Buku Pada Transaksi Peminjaman di Perpustakaan Universitas Dian Nuswantoro,†Universitas Dian Nuswantoro, 2014.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Inna Novianty, Walidatush Sholihah, Yudawan Aditama, Aplikasi Virtual Reality Atom Kimia di Seamolec , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
- Willy Riyadi, Jasmir Jasmir, Performance Prediction of Airport Traffic Using LSTM and CNN-LSTM Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Husain Husain, Pulung Nurtantio Andono, M. Arif Soeleman, Perspektif Baru Enterprise Architecture Pemerintahan Kota Mataram Berbasis TOGAF ADM , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 16 No. 2 (2017)
- Elly Mufida, Dedi Irawan, Giatika Chrisnawati, REMOTE SITE MIKROTIK VPN DENGAN POINT TO POINT TUNNELING PROTOCOL (PPTP) STUDI KASUS PADA YAYASAN TERATAI GLOBAL JAKARTA , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 16 No. 2 (2017)
- Bobby Poerwanto, Fajriani Fajriani, Resilient Backpropagation Neural Network on Prediction of Poverty Levels in South Sulawesi , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 1 (2020)
- Jhon Veri, Surmayanti Surmayanti, Guslendra Guslendra, Prediksi Harga Minyak Mentah Menggunakan Jaringan Syaraf Tiruan , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Zilvanhisna Emka Fitri, Lalitya Nindita Sahenda, Sulton Mubarok, Abdul Madjid, Arizal Mujibtamala Nanda Imron, Implementing K-Nearest Neighbor to Classify Wild Plant Leaf as a Medicinal Plants , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Abulwafa Muhammad, Sarjon Defit, Analyzing the use of Social Media by Fashion Designers with K-Means and C45 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
- Muhamad Nur Gunawan, Titi Farhanah, Siti Ummi Masruroh, Ahmad Mukhlis Jundulloh, Nafdik Zaydan Raushanfikar, Rona Nisa Sofia Amriza, Accuracy of K-Nearest Neighbors Algorithm Classification For Archiving Research Publications , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Imam Ahmad Ashari, Anggit Wirasto, Deny Nugroho Triwibowo, Purwono Purwono, Implementasi Market Basket Analysis dengan Algoritma Apriori untuk Analisis Pendapatan Usaha Retail , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
You may also start an advanced similarity search for this article.