Implementasi Market Basket Analysis dengan Algoritma Apriori untuk Analisis Pendapatan Usaha Retail
DOI:
https://doi.org/10.30812/matrik.v21i3.1439Keywords:
Apriori, Association, Data Mining, Market Basket Analysis, RetailAbstract
Pada era teknologi sekarang hampir semua bisnis ritel sudah menggunakan teknologi Point of Sale (PoS), dimana semua transaksi di rekap dalam sebuah database sistem. Data yang disimpan di dalam database dapat diolah untuk meningkatkan penjualan. Dengan mengetahui asosiasi data penjualan, aplikasi dapat memberikan rekomendasi produk yang memungkinkan pelanggan untuk membeli rekomendasi produk tersebut. Tujuan dari penelitian ini adalah mengetahui pola asosiasi yang terdapat pada sebuah toko yang sudah menerapkan teknologi PoS. Apabila pola asosiasi tersebut membentuk keterhubungan produk yang relevan dan mendatangkan keuntungan lebih maka metode yang di usulkan akan di terapkan pada aplikasi toko. Algoritma Apriori dapat menemukan pola hubungan produk antar satu atau lebih item dalam suatu dataset. Hanya saja Algoritma Apriori memiliki kelemahan dalam performa. Penerapan algoritma apriori dapat memperlambat akses transaksi, sehingga perlu pengkajian lebih dalam tentang kebermanfaatan pola asosiasi ini. Pada penelitian ini pola asosiasi dianalisis apakah berpengaruh terhadap peningkatan penjualan. Dalam penelitian ini didapatkan bahwa pola asosiasi memiliki peran penting dalam peningkatan penjualan. Didapatkan rata - rata asosiasi dengan nilai confidence tertinggi terjadi pada bulan maret, yaitu 0.61 dengan nilai minimal support 0.003. Hal ini sesuai dengan hasil penjualan tertinggi, yaitu sebesar Rp. 295.509.934 pada bulan maret, tahun 2021. Berdasarkan penelitian ini maka penggunaan algoritma apriori pada aplikasi POS perlu diterapkan.
Downloads
References
Forecast Using Association Rule and CRISP-DM Method,†International Journal of Engineering and Techniques, vol. 4, no. 1, pp.
186–192, 2018.
[2] M. Al-Maolegi and B. Arkok, “An Improved Apriori Algorithm For Association Rules,†International Journal on Natural Language
Computing (IJNLC), vol. 3, no. 1, pp. 21–29, 2017.
[3] M. Al-maolegi and B. Arkok, “A N I MPROVED A PRIORI A LGORITHM FOR,†vol. 3, no. 1, pp. 21–29, 2014.
[4] W. Altaf, M. Shahbaz, and A. Guergachi, “Applications of association rule mining in health informatics : a survey,†Artificial
Intelligence Review, 2016.
[5] A. Anggrawan, M. Mayadi, and C. Satria, “Menentukan Akurasi Tata Letak Barang dengan Menggunakan Algoritma Apriori dan
Algoritma FP-Growth,†MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 21, no. 1, pp. 125–138,
2021.
[6] M. Syahrir and F. Fatimatuzzahra, “Association Rule Integrasi Pendekatan Metode Custom Hashing dan Data Partitioning untuk
Mempercepat Proses Pencarian Frekuensi Item-set pada Algoritma Apriori,†MATRIK : Jurnal Manajemen, Teknik Informatika dan
Rekayasa Komputer, vol. 20, no. 1, pp. 149–158, 2020.
[7] R. Wang, W. Ji, M. Liu, X. Wang, J. Weng, and S. Deng, “Review on mining data from multiple data sources,†Pattern Recognition
Letters, vol. 0, pp. 1–9, 2018.
[8] M. Heydari, “A New Optimization Model for Market Basket Analysis with Allocation Considerations : A Genetic Algorithm Solution
Approach,†no. 2003, 2006.
[9] H. Hruschka, Comparing Unsupervised Probabilistic Machine Learning Methods for Market Basket Analysis. Springer Berlin
Heidelberg, 2019, no. 0123456789.
[10] H. Yu, J. Wen, H. Wang, and L. J. De, “Procedia Engineering An Improved Apriori Algorithm Based On The Boolean Matrix and
Hadoop,†2011.
[11] S. Sulastri, E. Zuliarso, and Y. Anis, “Implementasi Algoritma Apriori Dan Algoritma Eclat Pada Ahass Akmal Jaya Purwodadi,â€
Dinamik, vol. 22, no. 1, pp. 50–56, 2017.
[12] M. G. Ingle and N. Y. Suryavanshi, “Association Rule Mining using Improved Apriori Algorithm,†International Journal of Computer
Applications, vol. 112, no. 4, pp. 975–8887, 2015.
[13] Kusrini and E. T. Luthfi, Algoritma Data Mining. Yogyakarta: Andi Publisher, 2009.
[14] M. Fauzy, K. R. Saleh W, and I. Asror, “Penerapan Metode Association Rule menggunakan Algoritma Apriori pada Simulasi Prediskis
Hujan Wilayah Kota Bandung,†Jurnal Ilmiah Teknologi Informasi Terapan, vol. 2, no. 2, pp. 221–227, 2016.
[15] E. Elisa, “Market Basket Analysis Pada Mini Market Ayu Dengan Algoritma Apriori,†RESTI (Rekayasa Sistem dan Teknologi
Informasi), vol. 2, no. 2, pp. 472–478, 2018. [Online]. Tersedia: https://doi.org/10.29207/resti.v2i2.280
Implementasi
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Hadi Santoso, Hilyah Magdalena, Helna Wardhana, Aplikasi Dynamic Cluster pada K-Means BerbasisWeb untuk Klasifikasi Data Industri Rumahan , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Paska Marto Hasugian, Devy Mathelinea, Siska Simamora, Pandi Barita Nauli Simangunsong, Comparative Evaluation of Data Clustering Accuracy through Integration of Dimensionality Reduction and Distance Metric , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Desi Vinsensia, Siskawati Amri, Jonhariono Sihotang, Hengki Tamando Sihotang, New Method for Identification and Response to Infectious Disease Patterns Based on Comprehensive Health Service Data , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Ahmat Adil, ANALYSIS PROXIMITY MENENTUKAN LOKASI PERKEBUNAN DI LOMBOK BARAT , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 15 No. 1 (2015)
- Susandri Susandri, Ahmad Zamsuri, Nurliana Nasution, Yoyon Efendi, Hiba Basim Alwan, The Mitigating Overfitting in Sentiment Analysis Insights from CNN-LSTM Hybrid Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Yully Sofyah Waode, Anang Kurnia, Yenni Angraini, K-Means Optimization Algorithm to Improve Cluster Quality on Sparse Data , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Taufik Hidayat, Mohammad Ridwan, Muhamad Fajrul Iqbal, Sukisno Sukisno, Robby Rizky, William Eric Manongga, Determining Toddler's Nutritional Status with Machine Learning Classification Analysis Approach , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Denny Indrajaya, Adi Setiawan, Bambang Susanto, Comparison of k-Nearest Neighbor and Naive Bayes Methods for SNP Data Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Arief Hermawan, Adityo Permana Wibowo, Akmal Setiawan Wijaya, The Improvement of Artificial Neural Network Accuracy Using Principle Component Analysis Approach , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Anas Syaifudin, Purwanto Purwanto, Heribertus Himawan, M. Arief Soeleman, Customer Segmentation with RFM Model using Fuzzy C-Means and Genetic Programming , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
You may also start an advanced similarity search for this article.