Implementation of K-Means Clustering on Poverty Indicators in Indonesia
DOI:
https://doi.org/10.30812/matrik.v21i2.1289Keywords:
Poverty Gap Index, Poverty Severity Index, K-Means, Machine Learning, Cluster AnalysisAbstract
This study aims to cluster all districts/cities in Indonesia related to poverty indicators. The attributes used are poverty gap index and poverty severity index. The data used comes from BPS. The method used is K-Means clustering, and the results show that by using the elbow and silhouette index methods, the optimal number of clusters is 2, where for cluster 1, it can be defined as a cluster with an area with a high poverty gap index and poverty severity index compared to cluster 2. As a result, cluster 1 has 42 districts/cities, and 472 for cluster 2.
Downloads
References
[2] B. Poerwanto, R. Y. Fa’rifah, W. Sanusi, and S. Side, “A matlab code to compute prediction of survival trends in patients with DHF,†Journal of Physics: Conference Series, vol. 1028, no. 1, pp. 1–7, Jun. 2018.
[3] M. Barchitta et al., “Cluster analysis identifies patients at risk of catheter-associated urinary tract infections in intensive care units: findings from the SPIN-UTI Network,†Journal of Hospital Infection, vol. 107, pp. 57–63, Jan. 2021.
[4] Y. Meng, J. Liang, F. Cao, and Y. He, “A new distance with derivative information for functional k-means clustering algorithm,†Information Sciences, vol. 463–464, pp. 166–185, Oct. 2018.
[5] S. Askari, “Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development,†in Expert Systems with Applications, Mar. 2021, vol. 165, pp. 1–71.
[6] B. Poerwanto and R. Y. Fa’rifah, “Analisis Cluster K-Means dalam Pengelompokan Kemampuan Mahasiswa,†Indonesian Journal of Fundamental Sciences, vol. 2, no. 2, pp. 92–96, 2016.
[7] J. Heil, V. Häring, B. Marschner, and B. Stumpe, “Advantages of fuzzy k-means over k-means clustering in the classification of diffuse reflectance soil spectra: A case study with West African soils,†Geoderma, vol. 337, pp. 11–21, Mar. 2019.
[8] V. Heidrich-Meisner and R. F. Wimmer-Schweingruber, Solar wind classification via k-means clustering algorithm. Elsevier Inc., 2018.
[9] B. Poerwanto, “Evaluating the K-Means Analysis in Clustering Area Based on Estates Productivity in Tana Luwu Using Silhouette Index,†Journal of Physics: Conference Series, vol. 1752, no. 1, pp. 1–7, Feb. 2021.
[10] M. Moatsos and A. Lazopoulos, “Global poverty: A first estimation of its uncertainty,†World Development Perspectives, vol. 22, pp. 1–16, Jun. 2021.
[11] BPS, Berita Resmi Statistik. Jakarta: Badan Pusat Statistika, 2020.
[12] A. T. Rahman, Wiranto, and A. Rini, “Coal Trade Data Clustering Using K-Means (Case Study Pt. Global Bangkit Utama),†ITSMART: Jurnal Teknologi dan Informasi, vol. 6, no. 1, pp. 24–31, 2017.
[13] Y. Hozumi, R. Wang, C. Yin, and G.-W. Wei, “UMAP-assisted K-means clustering of large-scale SARS-CoV-2 mutation datasets,†Computers in Biology and Medicine, vol. 131, pp. 1–14, Apr. 2021.
[14] M. A. Nahdliyah, T. Widiharih, and A. Prahutama, “Metode K-Medoids Clustering dengan Validasi Silhouette Index dan C-Index,†Jurnal Gaussian, vol. 8, no. 2, pp. 161–170, 2019.
[15] N. Chalid and Y. Yusuf, “Pengaruh Tingkat Kemiskinan dan Tingkat Pengangguran, Upah Minimun Kabupaten/Kota Dan Laju Pertumbuhan Ekonomi Terhadap Indeks Pembangunan Manusia di Provinsi Riau,†Jurnal Ekonomi, vol. 22, no. 2, pp. 1–12, 2014.
[16] A. Artino, B. Juanda, and S. Mulatsih, “The Relationship of Village Funds to Poverty,†Tataloka, vol. 21, no. 3, pp. 381–389, 2019.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Prihandoko Prihandoko, Deny Jollyta, Gusrianty Gusrianty, Muhammad Siddik, Johan Johan, Cluster Validity for Optimizing Classification Model: Davies Bouldin Index – Random Forest Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Saiful Nur Arif, Muhammad Dahria, Sarjon Defit, Dicky Novriansyah, Ali Ikhwan, Implementation of Single Linked on Machine Learning for Clustering Student Scientific Fields , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Gallen cakra adhi wibowo, Sri Yulianto Joko Prasetyo, Irwan Sembiring, Tsunami Vulnerability and Risk Assessment in Banyuwangi District using machine learning and Landsat 8 image data , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Wahyu Styo Pratama, Didik Dwi Prasetya, Triyanna Widyaningtyas, Muhammad Zaki Wiryawan, Lalu Ganda Rady Putra, Tsukasa Hirashima, Performance Evaluation of Artificial Intelligence Models for Classification in Concept Map Quality Assessment , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Danang Wahyu Utomo, Christy Atika Sari, Folasade Olubusola Isinkaye, Quality Improvement for Invisible Watermarking using Singular Value Decomposition and Discrete Cosine Transform , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Andi Hary Akbar, Heri Wijayanto, I Wayan Agus Arimbawa, K-Means-Based Customer Segmentation with Domain-Specific Feature Engineering for Water Payment Arrears Management , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 25 No. 1 (2025)
- Siti Ummi Masruroh, Cong Dai Nguyen, Doni Febrianus, Comparative Analysis of TF-IDF and Modern Text Embedding for the Classification of Islamic Ideologies on Indonesian Twitter , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 25 No. 1 (2025)
- Lalu Zazuli Azhar Mardedi, Ariyanto Ariyanto, Analisa Kinerja System Gluster FS pada Proxmox VE untuk Menyediakan High Availability , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Nurun Latifah, Ramaditia Dwiyansaputra, Gibran Satya Nugraha, Multiclass Text Classification of Indonesian Short Message Service (SMS) Spam using Deep Learning Method and Easy Data Augmentation , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Mukhlis Mukhlis, Puput Yuniar Maulidia, Achmad Mujib, Adi Muhajirin, Alpi Surya Perdana, Integration of Deep Learning and Autoregressive Models for Marine Data Prediction , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Bobby Poerwanto, Fajriani Fajriani, Resilient Backpropagation Neural Network on Prediction of Poverty Levels in South Sulawesi , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 1 (2020)
- Bobby Poerwanto, Baso Ali, Implementasi Algoritma Fuzzy C-Means dalam Mengelompokkan Kecamatan di Tana Luwu Berdasarkan Produktifitas Hasil Perkebunan , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
.png)











