Model Peramalan Artificial Neural Network pada Peserta KB Aktif Jalur Pemerintahan menggunakan Artificial Neural Network Back-Propagation
DOI:
https://doi.org/10.30812/matrik.v21i1.1273Keywords:
Back-Propagation, Prediction, Active Family Planning Participant, Architecture, Matlab SoftwareAbstract
Pertumbuhan penduduk di Indonesia yang terus meningkat setiap tahunnya dan tidak disertai dengan ketersediaan lapangan pekerjaan yang mampu menampung seluruh angkatan kerja bisa menimbulkan pengangguran, kriminalitas, yang bersinggungan pula dengan rusaknya moralitas masyarakat. Oleh karena pemerintah memberikan serangkaian usaha untuk menekan laju pertumbuhan penduduk agar tidak terjadi ledakan penduduk yang lebih besar. Salah satu cara yang dilakukan adalah dengan menggalakkan program KB (Keluarga Berencana). Tujuan dari penelitian untuk membuat model prediksi dengan memanfaatkan Artificial Neural Network (ANN) pada peserta KB aktif jalur pemerintahan untuk melihat laju pertumbuhan penduduk kedepannya dalam rentang waktu tertentu guna mempermudah pemerintah dalam membuat rancangan perencanaan ke depannya. Back-propagation merupakan salah satu metode yang digunakan untuk melakukan peramalan yang merupakan bagian dari ANN. Hal ini perlu dilakukan mengingat jumlah kepadatan penduduk terus meningkat setiap tahunnya dan KB merupakan salah satu program pemerintah yang bertujuan mengendalikan laju kenaikan penduduk di Indonesia. Dataset yang digunakan yakni peserta KB aktif di Kota Pematangsiantar bulan agustus 2019 – januari 2020. Pengujian dilakuan dengan bantuan software matlab dengan menguji 5 model arsitektur (try error) yakni model 4-5-1; model 4-7-1; model 4-8-5-1; dan model 4-9-7-1. Hasil analisis diperoleh bahwa model arsitektur 4-8-5-1 merupakan yang terbaik dan dijadikan acuan untuk meramalkan peserta KB aktif pada jalur pemerintah dengan tingkat akurasi sebesar 71% (terbaik dari 4 model arsitektur lainnya). Model ANN tersebut dapat diimpementasikan untuk melakukan prediksi terhadap peserta KB aktif jalur pemerintahan sehingga pemerintah dapat melakukan rancangan untuk kedepannya.
Downloads
References
[2] D. S. Seruni, M. T. Furqon, and R. C. Wihandika, “Sistem Prediksi Pertumbuhan Jumlah Penduduk Kota Malang menggunakan Metode K-Nearest Neighbor Regression,†Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 4, no. 4, pp. 1075–1082, 2020.
[3] S. Sunardi, A. Yudhana, and G. Z. Muflih, “Sistem Prediksi Curah Hujan Bulanan Menggunakan Jaringan Saraf Tiruan Backpropagation,†Jurnal Sistem Informasi Bisnis, vol. 10, no. 2, pp. 155–162, 2020.
[4] P. Indrayati Sijabat, Y. Yuhandri, G. Widi Nurcahyo, and A. Sindar, “Algoritma Backpropagation Prediksi Harga Komoditi terhadap Karakteristik Konsumen Produk Kopi Lokal Nasional,†Digital Zone: Jurnal Teknologi Informasi dan Komunikasi, vol. 11, no. 1, pp. 96–107, 2020.
[5] Y. A. Lesnussa, C. G. Mustamu, F. Kondo Lembang, and M. W. Talakua, “Application of Backpropagation Neural Networks in Predicting Rainfall Data in Ambon City,†International Journal of Artificial Intelligence Research, vol. 2, no. 2, 2018.
[6] A. P. Windarto, M. R. Lubis, and S. Solikhun, “Implementasi JST pada Prediksi Total Laba Rugi Komprehensif Bank Umum dan Konvensional dengan Backpropagation,†Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 4, p. 411, 2018.
[7] I. A. R. Simbolon, F. Yatussa’ada, and A. Wanto, “Penerapan Algoritma Backpropagation dalam Memprediksi Persentase Penduduk Buta Huruf di Indonesia,†Jurnal Informatika Upgris, vol. 4, no. 2, 2019.
[8] Y. Aprizal, R. I. Zainal, and A. Afriyudi, “Perbandingan Metode Backpropagation dan Learning Vector Quantization (LVQ) Dalam Menggali Potensi Mahasiswa Baru di STMIK PalComTech,†MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 18, no. 2, pp. 294–301, 2019.
[9] B. Poerwanto and F. Fajriani, “Resilient Backpropagation Neural Network on Prediction of Poverty Levels in South Sulawesi,†MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 20, no. 1, pp. 11–18, 2020.
[10] Budiharjo, T. Soemartono, A. P. Windarto, and T. Herawan, “Predicting School Participation in Indonesia using Back-Propagation Algorithm Model,†International Journal of Control and Automation, vol. 11, no. 11, pp. 57–68, 2018.
[11] W. Saputra, A. P. Windarto, and A. Wanto, “Analysis of the Resilient Method in Training and Accuracy in the Backpropagation Method,†The IJICS (International Journal of Informatics and Computer Science), vol. 5, no. 1, pp. 52–56, 2021.
[12] A. Perdana, S. Defit, and A. Wanto, “Optimalisasi Parameter dengan Cross Validation dan Neural Back-propagation Pada Model Prediksi Pertumbuhan Industri Mikro dan Kecil,†Jurnal Sistem Informasi Bisnis, vol. 01, no. 11, pp. 34–42, 2021.
[13] S. Pohan, B. Warsito, and S. Suryono, “Backpropagation artificial neural network for prediction plant seedling growth,†Journal of Physics: Conference Series, vol. 1524, no. 1, 2020.
[14] N. Nikentari, H. Kurniawan, N. Ritha, D. Kurniawan, U. Maritim, and R. Ali, “Particle Swarm Optimization Untuk Prediksi Pasang Surut Air Optimization of Backpropagation Artificial Neural Network With Particle Swarm Optimization To Predict Tide Level,†Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 5, pp. 605–612, 2018.
[15] H. Haviluddin, Z. Arifin, A. H. Kridalaksana, and D. Cahyadi, “Prediksi Kedatangan Turis Asing ke Indonesia Menggunakan Backpropagation Neural Networks,†Jurnal Teknologi dan Sistem Komputer, vol. 4, no. 4, p. 485, 2016.
[16] R. Ruslan, L. Laome, I. Usman, and E. W. Harisa, “Electricity Consumption Modelling in Kendari using the Backpropagation Method on the Artificial Neural Network,†Journal of Physics: Conference Series, vol. 1863, no. 1, 2021.
[17] P. Li and Q. Zhang, “Face Recognition Algorithm Comparison based on Backpropagation Neural Network,†Journal of Physics: Conference Series, vol. 1865, no. 4, 2021.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Imanuddin Imanuddin, Fachrid Alhadi, Raza Oktafian, Ahmad Ihsan, Deteksi Mata Mengantuk pada Pengemudi Mobil Menggunakan Metode Viola Jones , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Muhammad Furqan Nazuli, Muhammad Fachrurrozi, Muhammad Qurhanul Rizqie, Abdiansah Abdiansah, Muhammad Ikhsan, A Image Classification of Poisonous Plants Using the MobileNetV2 Convolutional Neural Network Model Method , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Ni Wayan Sumartini Saraswati, I Wayan Dharma Suryawan, Ni Komang Tri Juniartini, I Dewa Made Krishna Muku, Poria Pirozmand, Weizhi Song, Recognizing Pneumonia Infection in Chest X-Ray Using Deep Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Dela Ananda Setyarini, Agnes Ayu Maharani Dyah Gayatri, Christian Sri Kusuma Aditya, Didih Rizki Chandranegara, Stroke Prediction with Enhanced Gradient Boosting Classifier and Strategic Hyperparameter , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Husain Husain, Pulung Nurtantio Andono, M. Arif Soeleman, Perspektif Baru Enterprise Architecture Pemerintahan Kota Mataram Berbasis TOGAF ADM , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 16 No. 2 (2017)
- Khasnur Hidjah, Helna Wardhana, Heroe Santoso, Anthony Anggrawan, SISTEM INFORMASI PEMANTAUAN STATUS GIZI BALITA , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 15 No. 2 (2016)
- Abd Mizwar A Rahim, Andi Sunyoto, Muhammad Rudyanto Arief, Stroke Prediction Using Machine Learning Method with Extreme Gradient Boosting Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- sayuti rahman, Marwan Ramli, Arnes Sembiring, Muhammad Zen, Rahmad B.Y Syah, Normalization Layer Enhancement in Convolutional Neural Network for Parking Space Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Nora Dery Sofya, Shinta Esabella, Rodianto Rodianto, RANCANG BANGUN APLIKASI KAMUS BAHASA SUMBAWA BERBASIS ANDROID , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 17 No. 1 (2017)
- Ni Gusti Ayu Dasriani, Ria Rismayati, Architecture Enterprise Program Studi S1 Teknik Informatika dengan TOGAF Architecture Development Method (Studi Kasus : STMIK Bumigora Mataram) , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 1 (2018)
You may also start an advanced similarity search for this article.