Feature Selection Correlation-Based pada Prediksi Nasabah Bank Telemarketing untuk Deposito
DOI:
https://doi.org/10.30812/matrik.v20i2.1183Keywords:
Seleksi Fitur, Correlation Based, Klasifikasi, Prediksi, Multilayer PerceptronAbstract
Pre-processing merupakan tahap yang penting dalam melakukan klasifikasi data. Pre-processing berguna untuk mempersiapkan data sehingga teknik klasifikasi yang diterapkan menghasilkan pola yang berkualitas dan akurat. Salah satu teknik data pre-processing yang sering digunakan untuk mengetahui atribut yang paling berpengaruh pada sebuah dataset adalah feature selection. Data yang digunakan dalam penelitian ini adalah customer data collection dari a Portuguese banking institution in UCI Machine Learning Repository. Penelitian ini menggunakan metode feature selection correlation-based yang dikombinasikan dengan metode klasifikasi Multilayer Perceptron Neural Networks. Tujuan penelitian ini untuk mengidentifikasi atribut yang paling relevan dan berpengaruh dari dataset dalam memprediksi nasabah yang potensial untuk penawaran deposito berjangka. Penelitian ini menghasilkan 10 atribut yang memiliki ranking teratas. Atribut-atribut tersebut adalah duration, previous, contact, cons.price.idx, month, cons.cof.idx, age, job, marital, dan housing. Hasil klasifikasi dari atribut yang terpilih memiliki tingkat akurasi tertinggi sebesar 80.5% dan tingkat akurasi terendah 79.1%.
Downloads
References
[2] J. Nalic and A. Svraka, “Importance of data pre-processing in credit scoring models based on data mining approaches,†in 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), May 2018, pp. 1046–1051.
[3] I. made B. Adnyana, “Penerapan Feature Selection untuk Prediksi Lama Studi Mahasiswa,†Jurnal Sistem Dan Informatika, vol. 13, no. 2, pp. 72–76, 2019.
[4] N. K. Suchetha, A. Nikhil, and P. Hrudya, “Comparing the Wrapper Feature Selection Evaluators on Twitter Sentiment Classification,†in 2019 International Conference on Computational Intelligence in Data Science (ICCIDS), 2019, pp. 1–6.
[5] S. Moro, P. Cortez, and P. Rita, “A data-driven approach to predict the success of bank telemarketing,†Decision Support System, vol. 62, pp. 22–31, 2014.
[6] J. Asare-Frempong and M. Jayabalan, “Predicting customer response to bank direct telemarketing campaign,†in 2017 International Conference on Engineering Technology and Technopreneurship (ICE2T), Sep. 2017, vol. 2017-Janua, pp. 1–4.
[7] K. Morani, E. K. Ayana, and S. N. Engin, “Developement of Prediction in Clients’ Consent to a Bank Term Deposit Using Feature Selection,†in 2018 6th International Conference on Control Engineering & Information Technology (CEIT), Oct. 2018, pp. 1–5.
[8] A. S. B. Asmoro, W. S. G. Irianto, and U. Pujianto, “Perbandingan Kinerja Hasil Seleksi Fitur pada Prediksi Kinerja Akademik Siswa Berbasis Pohon Keputusan,†Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 4, no. 2, pp. 84–89, Dec. 2018.
[9] A. N. Puteri, Dewiani, and Z. Tahir, “Comparison of Potential Telemarketing Customers Predictions with a Data Mining Approach using the MLPNN and RBFNN Methods,†in 2019 International Conference on Information and Communications Technology (ICOIACT), Jul. 2019, pp. 383–387.
[10] P. Hosein, S. Ramoudith, and I. Rahaman, “On the Optimal Allocation of Resources for a Marketing Campaign,†in Proceedings of the 10th International Conference on Operations Research and Enterprise Systems, 2021, pp. 169–176.
[11] M. Dash and H. Liu, “Feature Selection for Classification,†Intelligent Data Analysis., vol. 1, no. 4, pp. 131–156, 1997.
[12] G. S, T. M, M. V.T, and G. V, “Classification Algorithms with Attribute Selection:An Evaluation Study using WEKA,†International Journal of Advanced Networking and Applications, vol. 9, no. 6, pp. 3640–3644, 2018.
[13] Y. Sugianela and T. Ahmad, “Pearson Correlation Attribute Evaluation-based Feature Selection for Intrusion Detection System,†in 2020 International Conference on Smart Technology and Applications (ICoSTA), Feb. 2020, pp. 1–5.
[14] A. Kustiyo, H. Firqiani, and E. Giri, “Seleksi Fitur Menggunakan Fast Correlation Based Filter pada Algoritma Voting Feature Intervals 5,†Jurnal Ilmu Komputer, vol. 6, no. 2, pp. 1–12, 2008.
[15] M. A. Halali, V. Azari, M. Arabloo, A. H. Mohammadi, and A. Bahadori, “Application of a radial basis function neural network to estimate pressure gradient in water–oil pipelines,†Journal of the Taiwan Institute Chemical Engineers, vol. 58, pp. 189–202, Jan. 2016.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Iis Gugum Gumilar, Yuda Syahidin, Erix Gunawan, Jeri Sukmawijaya, Automation Reporting Bed Efficiency Using Verification and Validation Method , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Desi Vinsensia, Siskawati Amri, Jonhariono Sihotang, Hengki Tamando Sihotang, New Method for Identification and Response to Infectious Disease Patterns Based on Comprehensive Health Service Data , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Fiby Nur Afiana, Pungkas Subarkah, A. Kholil Hidayat, Analisis Perbandingan Metode TAM dan Metode UTAUT 2 dalam Mengukur Kesuksesan Penerapan SIMRS pada Rumah Sakit Wijaya Kusuma DKT Purwokerto , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Tugiman Tugiman, Herman Herman, Anton Yudhana, The UTAUT Model for Measuring Acceptance of the Application of the Patient Registration System , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Roudlotul Jannah Alfirdausy, Nurissaidah Ulinnuha, Wika Dianita Utami, Implementation of The Extreme Gradient Boosting Algorithm with Hyperparameter Tuning in Celiac Disease Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Lalu Zazuli Azhar Mardedi, Ariyanto Ariyanto, Analisa Kinerja System Gluster FS pada Proxmox VE untuk Menyediakan High Availability , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Radimas Putra Muhammad Davi Labib, Sirojul Hadi, Parama Diptya Widayaka, Low Cost System for Face Mask Detection Based Haar Cascade Classifier Method , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Arief Hermawan, Adityo Permana Wibowo, Akmal Setiawan Wijaya, The Improvement of Artificial Neural Network Accuracy Using Principle Component Analysis Approach , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Putu Tisna Putra, Anthony Anggrawan, Hairani Hairani, Comparison of Machine Learning Methods for Classifying User Satisfaction Opinions of the PeduliLindungi Application , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Debby Ummul Hidayah, Pungkas Subarkah, Media Pembelajaran Tentang Klasifikasi Binatang Berbasis Video Animasi 3 Dimensi di SMP Negeri 2 Wangon , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Annisa Nurul Puteri, Suryadi Syamsu, Topan Leoni Putra, Andita Dani Achmad, Support Vector Machine for Predicting Candlestick Chart Movement on Foreign Exchange , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Muhammad Yusuf, Arizal Arizal, Ira Rosianal Hikmah, Implementation Cryptography and Access Control on IoT-Based Warehouse Inventory Management System , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
.png)











