Feature Selection Correlation-Based pada Prediksi Nasabah Bank Telemarketing untuk Deposito
DOI:
https://doi.org/10.30812/matrik.v20i2.1183Keywords:
Seleksi Fitur, Correlation Based, Klasifikasi, Prediksi, Multilayer PerceptronAbstract
Pre-processing merupakan tahap yang penting dalam melakukan klasifikasi data. Pre-processing berguna untuk mempersiapkan data sehingga teknik klasifikasi yang diterapkan menghasilkan pola yang berkualitas dan akurat. Salah satu teknik data pre-processing yang sering digunakan untuk mengetahui atribut yang paling berpengaruh pada sebuah dataset adalah feature selection. Data yang digunakan dalam penelitian ini adalah customer data collection dari a Portuguese banking institution in UCI Machine Learning Repository. Penelitian ini menggunakan metode feature selection correlation-based yang dikombinasikan dengan metode klasifikasi Multilayer Perceptron Neural Networks. Tujuan penelitian ini untuk mengidentifikasi atribut yang paling relevan dan berpengaruh dari dataset dalam memprediksi nasabah yang potensial untuk penawaran deposito berjangka. Penelitian ini menghasilkan 10 atribut yang memiliki ranking teratas. Atribut-atribut tersebut adalah duration, previous, contact, cons.price.idx, month, cons.cof.idx, age, job, marital, dan housing. Hasil klasifikasi dari atribut yang terpilih memiliki tingkat akurasi tertinggi sebesar 80.5% dan tingkat akurasi terendah 79.1%.
Downloads
References
[2] J. Nalic and A. Svraka, “Importance of data pre-processing in credit scoring models based on data mining approaches,†in 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), May 2018, pp. 1046–1051.
[3] I. made B. Adnyana, “Penerapan Feature Selection untuk Prediksi Lama Studi Mahasiswa,†Jurnal Sistem Dan Informatika, vol. 13, no. 2, pp. 72–76, 2019.
[4] N. K. Suchetha, A. Nikhil, and P. Hrudya, “Comparing the Wrapper Feature Selection Evaluators on Twitter Sentiment Classification,†in 2019 International Conference on Computational Intelligence in Data Science (ICCIDS), 2019, pp. 1–6.
[5] S. Moro, P. Cortez, and P. Rita, “A data-driven approach to predict the success of bank telemarketing,†Decision Support System, vol. 62, pp. 22–31, 2014.
[6] J. Asare-Frempong and M. Jayabalan, “Predicting customer response to bank direct telemarketing campaign,†in 2017 International Conference on Engineering Technology and Technopreneurship (ICE2T), Sep. 2017, vol. 2017-Janua, pp. 1–4.
[7] K. Morani, E. K. Ayana, and S. N. Engin, “Developement of Prediction in Clients’ Consent to a Bank Term Deposit Using Feature Selection,†in 2018 6th International Conference on Control Engineering & Information Technology (CEIT), Oct. 2018, pp. 1–5.
[8] A. S. B. Asmoro, W. S. G. Irianto, and U. Pujianto, “Perbandingan Kinerja Hasil Seleksi Fitur pada Prediksi Kinerja Akademik Siswa Berbasis Pohon Keputusan,†Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 4, no. 2, pp. 84–89, Dec. 2018.
[9] A. N. Puteri, Dewiani, and Z. Tahir, “Comparison of Potential Telemarketing Customers Predictions with a Data Mining Approach using the MLPNN and RBFNN Methods,†in 2019 International Conference on Information and Communications Technology (ICOIACT), Jul. 2019, pp. 383–387.
[10] P. Hosein, S. Ramoudith, and I. Rahaman, “On the Optimal Allocation of Resources for a Marketing Campaign,†in Proceedings of the 10th International Conference on Operations Research and Enterprise Systems, 2021, pp. 169–176.
[11] M. Dash and H. Liu, “Feature Selection for Classification,†Intelligent Data Analysis., vol. 1, no. 4, pp. 131–156, 1997.
[12] G. S, T. M, M. V.T, and G. V, “Classification Algorithms with Attribute Selection:An Evaluation Study using WEKA,†International Journal of Advanced Networking and Applications, vol. 9, no. 6, pp. 3640–3644, 2018.
[13] Y. Sugianela and T. Ahmad, “Pearson Correlation Attribute Evaluation-based Feature Selection for Intrusion Detection System,†in 2020 International Conference on Smart Technology and Applications (ICoSTA), Feb. 2020, pp. 1–5.
[14] A. Kustiyo, H. Firqiani, and E. Giri, “Seleksi Fitur Menggunakan Fast Correlation Based Filter pada Algoritma Voting Feature Intervals 5,†Jurnal Ilmu Komputer, vol. 6, no. 2, pp. 1–12, 2008.
[15] M. A. Halali, V. Azari, M. Arabloo, A. H. Mohammadi, and A. Bahadori, “Application of a radial basis function neural network to estimate pressure gradient in water–oil pipelines,†Journal of the Taiwan Institute Chemical Engineers, vol. 58, pp. 189–202, Jan. 2016.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Denny Indrajaya, Adi Setiawan, Bambang Susanto, Comparison of k-Nearest Neighbor and Naive Bayes Methods for SNP Data Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Virdiana Sriviana Fatmawaty, Imam Riadi, Herman Herman, Higher Education Institution Clustering Based on Key Performance Indicators using Quartile Binning Method , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Pardomuan Robinson Sihombing, Istiqomatul Fajriyah Yuliati, Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Muhammad Tajuddin, Ahmat Adil, Andi Sofyan Anas, Game for Sasak Script Based on Knuth Morris Pratt Algorithm and ADDIE Model , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Eka Hartati, Mardiana Mardiana, Evaluasi Penerapan Computer Based Test (CBT) sebagai Upaya Perbaikan Sistem pada Ujian Nasional untuk Sekolah Terpencil di Sumatera Selatan , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 1 (2018)
- Vikky Aprelia Windarni, Adi Setiawan, Atina Rahmatalia, Comparison of the Karney Polygon Method and the Shoelace Method for Calculating Area , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Jhon Veri, Surmayanti Surmayanti, Guslendra Guslendra, Prediksi Harga Minyak Mentah Menggunakan Jaringan Syaraf Tiruan , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Ismarmiaty Ismarmiaty, Adam Bachtiar, ANALISIS PENGARUH VARIABEL MODEL UTAUT TERHADAP PENERIMAAN DAN PENGGUNAAN APLIKASI BADAN PENYELENGGARA JAMINAN SOSIAL (BPJS) KESEHATAN DI KOTA MATARAM , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 17 No. 1 (2017)
- Tb Ai Munandar, Ajif Yunizar Yusuf Pratama, Regional Clustering Based on Types of Non-Communicable Diseases Using k-Means Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Nur Fitrianingsih Hasan, Muhammad Salis Amin Iribaram, Digitalisasi Kamus Bahasa Daerah Papua Menggunakan Metode Rapid Application Development , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Annisa Nurul Puteri, Suryadi Syamsu, Topan Leoni Putra, Andita Dani Achmad, Support Vector Machine for Predicting Candlestick Chart Movement on Foreign Exchange , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Muhammad Yusuf, Arizal Arizal, Ira Rosianal Hikmah, Implementation Cryptography and Access Control on IoT-Based Warehouse Inventory Management System , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
.png)











