Multi-Algorithm Approach to Enhancing Social Assistance Efficiency Through Accurate Poverty Classification
Abstract
The determination of poverty status in Lombok Utara district depends on criteria such as income, access to health and education services, and housing conditions. These factors are crucial for assessing the level of community welfare and guiding the allocation of social assistance by the district government. The purpose of this study is to address the gap by utilizing advanced data mining techniques to improve the accuracy of poverty status classification in North Lombok, thereby informing more effective social assistance policies. The method used in this research is the Random Forest (RF), K-Nearest Neighbor (KNN) and Naïve Bayes with split data 80% data training and 20% data testing. The finding indicated that the machine learning model the RF algorithm, which achieved an accuracy rate of 82.56%, proved to play an important role in this process by effectively distinguishing between different categories of poverty based on these criteria. In comparison, the KNN algorithm achieved an accuracy of 70.94% and the Naïve Bayes model achieved an accuracy of 53.47%. It means that the machine learning model using the RF algorithm has more accurate accuracy than the KNN and Naïve Bayes algorithm in predicting or recommending Recipients of Social Assistance from the District Government. The implication is that RF machine learning can help the role of social service officers in predicting the economic status of the community. The high accuracy of the RF algorithm enhances its role in informing targeted policy decisions and optimizing the effectiveness of social assistance programs. Nonetheless, continuous improvement is essential to refine the model's predictive capabilities and ensure the accuracy and reliability of poverty assessments. These continuous improvements are essential to effectively alleviate poverty and break the cycle of socio-economic disparities in the region.
Downloads
References
https://doi.org/10.1080/23792949.2024.2352550.
[2] S. E. Widodo and R. Wulandari, “Poverty and Public Policy: Local Government Efforts to Reduce Extreme Poverty,” vol. 5,
no. 1, pp. 93–104, https://doi.org/10.35326/jsip.v5i1.5067.
[3] A. Tenri and M. Hakim, “Impact of the Social Assistance Program on Poverty Levels in Urban Areas,” vol. 6, no. 1, pp.
789–797.
[4] K. R. Lekobane and G. Ton, “Does social protection reach those left behind: Empirical evidence from Botswana using
multidimensional poverty approaches,” pp. 1–15, https://doi.org/10.1080/19439342.2024.2355635.
[5] T. O. Jejeniwa, N. Z. Mhlongo, and T. O. Jejeniwa, “AI Solutions for Developmental Economics: Opportunities and Challenges
in Financial Inclusion and Poverty Alleviation,” vol. 6, no. 4, pp. 108–123, https://doi.org/10.51594/ijae.v6i4.1073.
[6] F. N. Umma, B. Warsito, and D. A. I. Maruddani, “Klasifikasi Status Kemiskinan Rumah Tangga Dengan Algoritma C5.0 di
Kabupaten Pemalang,” vol. 10, no. 2, pp. 221–229, https://doi.org/10.14710/j.gauss.v10i2.29934.
[7] L. O. Faujan and N. Agustina, “Analisis Faktor-Faktor yang Memengaruhi Status Kemiskinan Ekstrem Rumah Tangga di
Provinsi Maluku Tahun 2021,” vol. 2023, no. 1, pp. 343–352, https://doi.org/10.34123/semnasoffstat.v2023i1.1639.
[8] A. Hariyanto, B. Juanda, E. Rustiadi, and S. Mulatsih, “The Effectiveness of Village Funds in Alleviating Rural Poverty: A
Case Study of Belitung Regency,” vol. 39, no. 1, pp. 197–208, https://doi.org/10.29313/mimbar.v39i1.2309.
[9] A. Artino, B. Juanda, and S. Mulatsih, “Keterkaitan Dana Desa terhadap Kemiskinan di Kabupaten Lombok Utara,” vol. 21,
no. 3, p. 381, https://doi.org/10.14710/tataloka.21.3.381-389.
[10] M. Sari and D. Susianto, “Decision Support System for Determining Indigent Public Health Insurance Participants With
Weighted Product Method in Pringsewu,” vol. 7, no. 1, p. 70, https://doi.org/10.56327/ijiscs.v7i1.1556.
[11] D. Kardeti, R. E. Agiati, P. Pribowo, A. Alfrojems, D. A. G. Pratiwi, and E. Susanto, “The Integrated Social
Protection for the Poor in an Autonomous Regency of West Java Indonesia,” vol. 4, no. 12, pp. 3640–3646,
https://doi.org/10.47191/ijsshr/v4-i12-25.
[12] A. S. Rizalitaher and C. Bisri, “Penentuan Tingkat Kemiskinan Masyarakat Menggunakan Metode MOORA,” vol. 3, no. 1, pp.
34–46, https://doi.org/10.55537/jibm.v3i1.680.
[13] F. Ramayanti, D. Vionanda, D. Permana, and Z. Zilrahmi, “Application of Random Forest to Identify for Poor Households in
West Sumatera Province,” vol. 1, no. 2, pp. 97–104, https://doi.org/10.24036/ujsds/vol1-iss2/31.
[14] F. Fauziah, M. A. Tiro, and F. Ruliana, “Comparison of k-Nearest Neighbor (k-NN) and Support Vector Machine (SVM)
Methods for Classification of Poverty Data in Papua,” vol. 2, no. 2, pp. 83–91, https://doi.org/10.35877/mathscience741.
[15] A. Alsharkawi, M. Al-Fetyani, M. Dawas, H. Saadeh, and M. Alyaman, “Poverty Classification Using Machine Learning: The
Case of Jordan,” vol. 13, no. 3, p. 1412, https://doi.org/10.3390/su13031412.
[16] R. Riliandhita, I. Maulana, and P. Purwanto, “Klasifikasi Penentuan Status Kemiskinan Penduduk Kelurahan Karangpawitan
Karawang Menggunakan Metode C4.5,” vol. 8, no. 2, pp. 1791–1796, https://doi.org/10.36040/jati.v8i2.9219.
[17] A. Fatikhurrizqi and B. D. Kurniawan, “Peran Bantuan Sosial dalam Pengentasan Kemiskinan Ekstrem di Jawa Timur Tahun
2020,” vol. 2022, no. 1, pp. 1027–1036, https://doi.org/10.34123/semnasoffstat.v2022i1.1322.
[18] D. P. Sari, “Penerapan Metode Weighted Product untuk Penentuan Penerima Bansos kepada Masyarakat Terdampak
COVID-19,” vol. 9, no. 01, pp. 5–10, https://doi.org/10.33884/jif.v9i01.2714.
[19] A. M. Asrandi T, S. A. Wati, A. Wahab, and A. Alfian, “Efektivitas Program Sistem Informasi Kesejahteraan Sosial (SIKS-Ng)
dalam Mendukung Program SLRT dan Puskesos Dinas Sosial Provinsi Sulawesi Selatan,” vol. 3, no. 09, pp. 1294–1305,
https://doi.org/10.36418/jiss.v3i09.695.
[20] F. Alghifari and D. Juardi, “Penerapan Data Mining Pada Penjualan Makanan Dan Minuman Menggunakan Metode Algoritma
Na¨ıve Bayes: Studi Kasus : Makan Barbeque Sepuasnya,” vol. 9, no. 2, pp. 75–81, https://doi.org/10.33884/jif.v9i02.3755.
[21] M. F. Julianto, S. W. Hadi, S. Setiaji, W. Gata, and R. Pebrianto, “Clustering Pencapaian Target Penjualan
Rumah Para Karyawan Marketing Menggunakan Rapid Miner dan Algoritma K-Means,” vol. 8, no. 2, pp. 79–85,
https://doi.org/10.31294/bi.v8i2.8189.
[22] R. S. P. Lubis, “Visualization Evaluation With the Rapid Miner Application Using the C4.5 Algorithm,” vol. 11, no. 03, pp.
173–179.
[23] D. Rifaldi, Abdul Fadlil, and Herman, “Teknik Preprocessing Pada Text Mining Menggunakan Data Tweet “Mental Health”,”
vol. 3, no. 2, pp. 161–171, https://doi.org/10.51454/decode.v3i2.131.
[24] M. A. Jassim and S. N. Abdulwahid, “Data Mining preparation: Process, Techniques and Major Issues in Data Analysis,” vol.
1090, no. 1, p. 012053, https://doi.org/10.1088/1757-899X/1090/1/012053.
[25] R. Oktafiani, A. Hermawan, and D. Avianto, “Pengaruh Komposisi Split data Terhadap Performa Klasifikasi Penyakit Kanker
Payudara Menggunakan Algoritma Machine Learning,” vol. 9, no. 1, pp. 19–28, https://doi.org/10.34128/jsi.v9i1.622.
[26] B. Alhajahmad and M. Atas¸, “Boosting Predictive Power: Random Forest and Gradient Boosted Trees in Ensemble Learning,”
in Proceeding Book of 2nd International Conference on Contemporary Academic Research ICCAR 2023. All Sciences
Academy, https://doi.org/10.59287/as-proceedings.133.
[27] M. F. Mustapha, A. N. I. Zulkifli, O. Kairan, N. N. S. M. Zizi, N. N. Yahya, and N. M. Mohamad, “The prediction of student’s
academic performance using RapidMiner,” vol. 32, no. 1, pp. 363–371, https://doi.org/10.11591/ijeecs.v32.i1.pp363-371.
[28] A. Soni, C. Arora, R. Kaushik, and V. Upadhyay, “Evaluating the Impact of Data Quality on Machine Learning Model
Performance,” vol. 14, no. 1, pp. 13–18, https://doi.org/10.36893/JNAO.2023.V14I1.0013-0018.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.