The Utilization Of The Conjugate Gradient Algorithm For Predicting School Year Expectations By Province

  • Astri Rismauli Simbolon STIKOM Tunas Bangsa
  • Solikhun Solikhun
Keywords: Artificial Neural Network, Backpropagation, Cojugate Gradient, Prediction

Abstract

Expected Length of School (HLS) is the length of school (in years) that is expected to be felt by children at a certain age in the future. It is assumed that the probability that the child will remain in school at the following ages is the same as the probability of the population attending school per total population for the current age. Length of School is also a benchmark for evaluating government programs in improving Human Resources that excel in the competition of technological advances. The purpose of this study is to apply the Conjugate Gradient Algorithm with the Best Performance for Predicting School Life Expectancy in Indonesia. Research data on the Expectation of Schooling in Indonesia consists of 10 Provinces obtained from the Central Statistics Agency from 2016 to 2021. This study uses 5 architectural models, namely 2-10-1, 2-15-1, 2-20-1, 2-25-1 and 2-30-1. Of the five architectural models used, the best architectural model is 2-3-1 with an MSE of 0.000000002 in two seconds. Based on this best architectural model, it will be used to predict the Expectation of Old Schools in Indonesia for the next five years, namely from 2022 to 2026.

References

[1] E. N. Manurung and F. Hutabarat, “Pengaruh Angka Harapan Lama Sekolah, Rata-Rata Lama Sekolah, Pengeluaran per Kapita Terhadap Indeks Pembangunan Manusia,” Jurnal Ilmiah Akuntansi Manajemen, vol. 4, no. 2, pp. 121–129, 2021.
[2] A. Irvana and S. Rohimah, “Analisis Jalur Untuk Pengaruh Angka Harapan Hidup, Harapan Lama Sekolah, Rata-Rata Lama Sekolah Terhadap Indeks Pembangunan Manusia Melalui Pengeluaran Riil Per Kapita Di Provinsi Nusa Tenggara Timur,” Jurnal Saintika Unpam: Jurnal Sains dan Matematika Unpam, vol. 2, no. 1, pp. 76–87, 2019.
[3] N. S. Siskawati, R. Z. Sudeska, and E. Siskawati, “Pengaruh Harapan Lama Sekolah, Rata – Rata Lama Sekolah Terhadap Tingkat Pengangguran Terbuka Di Kabupaten / Kota Provinsi Riau,” Selodang Mayang: Jurnal Ilmiah Badan Perencanaan Pembangunan Daerah Kabupaten Indragiri Hilir, vol. 7, no. 3, pp. 173–177, 2021.
[4] F. Ayatullah, M. . Julianto, A. . Garnadi, and S. Nurdiati, “Metode Conjugate Gradient Pararel Untuk Menyelesaikan Sistem Persamaan Linear Dalam Scilab,” Jurnal Matematika dan Aplikasinya, vol. 11, no. 2, pp. 19–36, 2012.
[5] K. N. A. Dewi, S. Bahri, and I. Irwansyah, “Model Prediksi Curah Hujan Harian Menggunakan Jaringan Syaraf Tiruan Backpropagation,” Journals of Indonesian Physical Review, vol. 2, no. 1, pp. 9–17, 2019.
[6] A. M. Kahar, “Analisis Angka Harapan Lama Sekolah di Indonesia Timur Menggunakan Weighted Least Squares Regression,” Jurnal Matematika MANTIK, vol. 4, no. 1, pp. 32–41, 2018.
[7] A. J. Mahya and W. Widowati, “Analisis Pengaruh Angka Harapan Lama Sekolah, Rata-Rata Lama Sekolah, Dan Pengeluaran Per Kapita Terhadap Indeks Pembangunan Manusia,” Prismatika: Jurnal Pendidikan dan Riset Matematika, vol. 3, no. 2, pp. 126–140, 2021.
[8] R. Irawan, “Increasing Old School Expectations (HLS) Through Education Socialization Programs,” Jurnal Pasopati, vol. 2, no. 2, pp. 110–115, 2020.
[9] W. Wulandari, “Implementasi Sistem Peramalan Persediaan Barang Menggunakan Metode Moving Average,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 3, p. 707, Jul. 2020, doi: 10.30865/mib.v4i3.2199.
[10] E. Hartato, D. Sitorus, and A. Wanto, “Analisis Jaringan Saraf Tiruan Untuk Prediksi Luas Panen Biofarmaka Di Indonesia,” Jurnal Semantik, vol. 4, no. 1, pp. 49–56, 2018.
[11] A. A. Mahmudi, “Optimasi Conjugate Gradient Pada Backpropagation Neural Network Untuk Prediksi Hasil Tangkap Ikan,” SAINTEKBU: Jurnal Sains dan Teknologi, vol. 12, no. 2, pp. 29–39, 2020.
[12] T. Afriliansyah and Z. Zulfahmi, “Prediction of Life Expectancy in Aceh Province by District City Using the Cyclical Order Algorithm,” International Journal of Information System & Technology, vol. 3, no. 2, pp. 268–275, 2020.
[13] S. P. Sinaga, A. Wanto, and S. Solikhun, “Implementasi Jaringan Syaraf Tiruan Resilient Backpropagation dalam Memprediksi Angka Harapan Hidup Masyarakat Sumatera Utara,” Jurnal Infomedia : Teknik Informatika, Multimedia, dan Jaringan, vol. 4, no. 2, pp. 81–88, 2019.
[14] S. H. B. Harmad and P. Tjiptoherijanto, “Prediksi Ketenagakerjaan Dan Sektor Pertanian Di Indonesia Tahun 2009 Serta Antisipasi Terhadap Ancaman Krisis Global,” Jurnal Kependudukan Indonesia, vol. 4, no. 2, pp. 1–14, 2009.
[15] A. Rahmani and M. Edwin, “Backpropagation Neural Network Untuk Prediksi Kesuksesan Film Secara Finansial,” Jurnal ICT : Information Communication & Technology, vol. 9, no. 1, pp. 9–16, 2020.
[16] J. Wahyuni, Y. W. Paranthy, and A. Wanto, “Analisis Jaringan Saraf Dalam Estimasi Tingkat Pengangguran Terbuka Penduduk Sumatera Utara,” Jurnal Infomedia, vol. 3, no. 1, pp. 18–24, 2018.
[17] A. A. Fardhani, D. I. N. Simanjuntak, and A. Wanto, “Prediksi Harga Eceran Beras Di Pasar Tradisional Di 33 Kota Di Indonesia Menggunakan Algoritma Backpropagation,” Jurnal Infomedia : Teknik Informatika, Multimedia, dan Jaringan, vol. 3, no. 1, pp. 25–30, 2018.
[18] A. P. Windarto, M. R. Lubis, and S. Solikhun, “Implementasi JST pada Prediksi Total Laba Rugi Komprehensif Bank Umum dan Konvensional dengan Backpropagation,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 4, pp. 411–418, 2018.
[19] A. Thahara, N. Nuri, I. T. Siregar, A. Wanto, and A. P. Windarto, “Analisis Kinerja Metode Fletcher Reeves Untuk Prediksi Ekspor Minyak Sawit Berdasarkan Negara Tujuan Utama,” in Seminar Nasional Ilmu Sosial Dan Teknologi - SANISTEK, 2021, pp. 248–255.
[20] I. S. Purba, D. Hartama, and I. O. Kirana, “Implementasi Algoritma Backpropagation dalam Memprediksi Jumlah Mahasiswa Baru pada AMIK-STIKOM Tunas Bangsa Pematangsiantar,” in Prosiding Seminar Nasional Riset Dan Information Science (SENARIS) 2019, 2019, pp. 795–803.
[21] I. C. Saragih, D. Hartama, and A. Wanto, “Prediksi Perkembangan Jumlah Pelanggan Listrik Menurut Pelanggan Area Menggunakan Algoritma Backpropagation,” JURIKOM (Jurnal Riset Komputer), vol. 7, no. 4, pp. 482–487, 2020.
Published
2023-03-16
How to Cite
[1]
A. Simbolon and S. Solikhun, “The Utilization Of The Conjugate Gradient Algorithm For Predicting School Year Expectations By Province”, International Journal of Engineering and Computer Science Applications (IJECSA), vol. 2, no. 1, pp. 41-52, Mar. 2023.
Section
Articles