Comparison of K-Means Clustering and K-Medoids Clustering in Grouping Fresh Milk Production in Indonesia Based on DBI Value

  • Mochamad Wahyudi Universitas BSI
  • Solikhun Solikhun AMIK Tunas Bangsa
  • Lise Pujiastuti STMIK Antar Banga
Keywords: Data mining, Clustering, K-Medoids, K-Means, Milk production

Abstract

The purpose of this study was to find the optimal grouping from the comparison of the two methods in grouping fresh milk production using the K-Means algorithm and the K-Medoids algorithm. To find optimal grouping, the authors compare the grouping results by looking for the smallest DBI (Davies Bouldin Index) value. The data used in this study is data on fresh milk production in Indonesia which is sourced from the Indonesian Central Bureau of Statistics for 2018-2020. Evaluation of the DBI value for the K-Means Clustering algorithm is 0.094 and the DBI value for K-Medoids Clustering is 0.072. Therefore, grouping fresh milk production using the K-Medoids algorithm has better results than using the K-Means Clustering algorithm, because the K-Medoids Clustering algorithm has a smaller DBI value of 0.072. The benefit of this study is to obtain optimal clusters in classifying fresh milk in Indonesia to provide information to the government in increasing fresh production in Indonesia in the future.

References

[1] E. Schubert and P. J. Rousseeuw, Fast and eager K-Medoids clustering: O(k) runtime improvement of the PAM, CLARA, and CLARANS algorithms, vol. 101, no. 124020371. 2021.
[2] B. M. Metisen and H. L. Sari, “Analisis clustering menggunakan metode K-Means dalam pengelompokkan penjualan produk pada Swalayan Fadhila,” J. Media Infotama, vol. 11, no. 2, pp. 110–118, 2015.
[3] Y. Cui, Y. C. Yang, and D. K. Yang, “Anchoring strength of dual rubbed alignment layers in liquid crystal cells,” Jpn. J. Appl. Phys., vol. 54, no. 6, pp. 91–99, 2015.
[4] D. Marlina, N. Lina, A. Fernando, and A. Ramadhan, “Implementasi Algoritma K-Medoids dan K-Means untuk Pengelompokkan Wilayah Sebaran Cacat pada Anak,” J. CoreIT J. Has. Penelit. Ilmu Komput. dan Teknol. Inf., vol. 4, no. 2, p. 64, 2018.
[5] L. Maulida, “Penerapan Datamining Dalam Mengelompokkan Kunjungan Wisatawan Ke Objek Wisata Unggulan Di Prov. Dki Jakarta Dengan K-Means,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 2, no. 3, p. 167, 2018.
[6] N. Suryana, “Penggunaan metode statistik K-Means Clustering pada analisis peruntukan lahan usaha tambang berbasis sistem informasi geografi,” J. Teknol. Miner. dan Batubara, vol. 7, no. 1, pp. 42–53, 2011.
[7] A. Lasisi, R. Ghazali, and T. Herawan, “Comparative Performance Analysis of Negative Selection Algorithm with Immune and Classification Algorithms,” Adv. Intell. Syst. Comput., vol. 287, pp. 441–452, 2014.
[8] R. D. Ramadhani and D. J. Ak, “Evaluasi K-Means dan K-Medoids pada Dataset Kecil,” Semin. Nas. Inform. dan Apl., no. September, pp. 20–24, 2017.
[9] I. Kamila, U. Khairunnisa, and M. Mustakim, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 5, no. 1, p. 119, 2019.
[10] Y. H. Susanti and E. Widodo, “Perbandingan K-Means dan K-Medoids Clustering terhadap Kelayakan Puskesmas di DIY Tahun 2015,” Pros. SI MaNIs (Seminar Nas. Integr. Mat. dan Nilai Islam., vol. 1, no. 1, pp. 116–122, 2017.
[11] R. A. Farissa, R. Mayasari, and Y. Umaidah, “Perbandingan Algoritma K-Means dan K-Medoids Untuk Pengelompokkan Data Obat dengan Silhouette Coefficient di Puskesmas Karangsambung,” J. Appl. Informatics Comput., vol. 5, no. 2, pp. 109–116, 2021.
[12] M. Herviany, S. P. Delima, T. Nurhidayah, and Kasini, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokkan Daerah Rawan Tanah Longsor di Provinsi Jawa Barat,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. 1, pp. 34–40, 2021.
[13] E. Luthfi and A. W. Wijayanto, “Analisis perbandingan metode hirearchical , K-Means , dan K-Medoids clustering dalam pengelompokkan indeks pembangunan manusia Indonesia Comparative analysis of hirearchical , K-Means , and K-Medoids clustering and methods in grouping Indonesia ’ s human,” Inovasi, vol. 17, no. 4, pp. 770–782, 2021.
[14] F. Harahap, “Perbandingan Algoritma K Means dan K Medoids Untuk Clustering Kelas Siswa Tunagrahita,” TIN Terap. Inform. Nusant., vol. 2, no. 4, pp. 191–197, 2021.
[15] A. Supriyadi, A. Triayudi, and I. D. Sholihati, “Perbandingan Algoritma K-Means Dengan K-Medoids Pada Pengelompokan Armada Kendaraan Truk Berdasarkan Produktivitas,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 6, no. 2, pp. 229–240, 2021.
[16] F. Farahdinna, I. Nurdiansyah, A. Suryani, and A. Wibowo, “Perbandingan Algoritma K-Means Dan K-Medoids Dalam Klasterisasi Produk Asuransi Perusahaan Nasional,” J. Ilm. FIFO, vol. 11, no. 2, p. 208, 2019.
[17] N. T. Luchia, H. Handayani, F. S. Hamdi, and ..., “… K-Means dan K-Medoids Pada Pengelompokan Data Miskin di Indonesia: Comparison of K-Means and K-Medoids on Poor Data Clustering in Indonesia,” … Indones. J. …, vol. 2, no. October, pp. 35–41, 2022.
[18] S. D. Nirwana, M. I. Jambak, and A. Bardadi, “Perbandingan Algoritma K-Means Dan K-Medoids Dalam Clustering Rata-Rata Penambahan Kasus Covid-19 Berdasarkan Kota/Kabupaten Di Provinsi Sumatera Selatan,” JSiI (Jurnal Sist. Informasi), vol. 9, no. 2, pp. 126–131, 2022.
[19] F. Faisal, L. A. Giopani, M. Fitriah, Z. C. Dwynne, and S. Syahidatul, “Comparison of K-Means and K-Medoids Algorithms for Temperature Grouping in Riau Province Perbandingan Algoritma K-Means dan K-Medoids Untuk Pengelompokan Suhu di Provinsi Riau,” vol. 2, no. 2, pp. 128–134, 2022.
[20] A. J. Wahidin and D. I. Sensuse, “Perbandingan Algoritma K-Means, X-Means Dan K-Medoids Untuk Klasterisasi Awak Kabin Lion Air,” J. ICT Inf. Commun. Technol., vol. 20, no. 2, pp. 298–302, 2021.
[21] D. A. I. C. Dewi and D. A. K. Pramita, “Analisis Perbandingan Metode Elbow dan Silhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali,” Matrix J. Manaj. Teknol. dan Inform., vol. 9, no. 3, pp. 102–109, 2019.
[22] J. Manurung, P. S. Ramadhan, and M. G. Suryanata, “Perbandingan Algoritma K-Means Dan K-Medoids Untuk Pengelompokkan Data Masyarakat Miskin Pada Kantor Camat Hatonduhan,” vol. 3, no. 9, pp. 1522–1531, 2020.
[23] B. A. Setiawan and Sulastri, “Perbandingan Clustering Optimalisasi Stok Barang Menggunakan Algoritma K – Means Dan Algoritma K – Medoids,” pp. 978–979, 2021.
[24] A. Amalia, D. R., Narasatu, R., Faqih, “Perbandingan Hasil Klasifikasi Rasa Minuman Thai Tea yang Paling Digemari Menggunakan K-Means dan K-Medoids,” Pros. Semin. Nas. Unimus, vol. 2, pp. 401–407, 2019.
Published
2022-12-20
How to Cite
Wahyudi, M., Solikhun, S., & Pujiastuti, L. (2022). Comparison of K-Means Clustering and K-Medoids Clustering in Grouping Fresh Milk Production in Indonesia Based on DBI Value. Jurnal Bumigora Information Technology (BITe), 4(2), 243-254. https://doi.org/https://doi.org/10.30812/bite.v4i2.2104
Section
Articles