Penerapan Algoritma Klasifikasi Naive Bayes dalam Klasifikasi KebutuhanPerawatan Pasien Demam Berdarah Dengue
DOI:
https://doi.org/10.30812/upgrade.v3i1.5457Keywords:
classification, DHF, Naive Bayes, patientsAbstract
Dengue fever (DF) is an illness caused by the Dengue virus, transmitted to humans through the bite of female Aedes aegypti mosquitoes, and the rise in DF cases often leads to a surge in hospital visits that can result in shortages of beds and medical personnel. In severe conditions, patients require treatment from health professionals experienced in managing this disease, and with advancements in scientific methods, classification techniques have become essential in identifying the severity level of DF patients to determine immediate and necessary treatment. This study aims to classify DF patients who require inpatient care by applying the Naive Bayes method to 230 observation records obtained from medical data of DF patients at Anwar Makkatutu Hospital in Bantaeng Regency during the 2019–2020 period, with model performance evaluated using a confusion matrix. The findings show that the Naive Bayes algorithm demonstrates fairly good performance in identifying patients who need hospitalization and those who do not, indicated by its AUC, accuracy, sensitivity, and specificity values of 0.702, 70.11%, 59.09%, and 81.40%, respectively. These results support more efficient allocation of limited healthcare resources and offer practical implications for clustering DF patients who require medical attention, enabling health authorities to improve planning, prepare adequate medical facilities, and optimize treatment readiness, while also contributing valuable insights to the scientific literature on related topics.
References
Anwar, S., Faujiah, R. L., Hartati, T., and Tohidi, E. (2024). Jurnal Informatika dan Rekayasa Perangkat
Lunak Klasifikasi Penentuan Tingkat Penyakit Demam Berdarah dengan menggunakan Algoritma
Naive Bayes (Studi Kasus Puskesmas Nagreg). Jurnal Informatika dan Rekayasa Perangkat Lunak,
6(1):205–212.
Aprihartha, M. A., Prasetya, J., and Fallo, S. I. (2024). Implementasi CART-Real Adaboost dalam
Memprediksi Minat Pelanggan Membeli Sepatu. Jurnal EurekaMatika, 12(1):35–46.
Bugis, H. (2022). Metode Naive Bayes Untuk Memprediksi Penyakit Stroke. Jurnal SISKOM-KB (Sistem
Komputer dan Kecerdasan Buatan), 6(1). https://doi.org/10.47970/siskom-kb.v6i1.317.
Desfita, S., Azzahra, M., Zulriyanti, N., Putri, M. N., and Anggraini, S. (2021). Jurnal Pengabdian Kesehatan
Komunitas (Journal of Community Health Service). Jurnal Pengabdian Kesehatan Komunitas,
01(1):20–31.
Dissa Nur Olivia, Suherman, and Sekarputri, A. L. (2025). Pengaruh Faktor Cuaca (Curah Hujan,
Kelembapan, dan Suhu) Terhadap Kejadian DBD. Health and Medical Sciences, 2(3):16. https:
//doi.org/10.47134/phms.v2i3.412.
Firmansyach, W. A., Hayati, U., and Arie Wijaya, Y. (2023). Analisa Terjadinya Overfitting Dan
Underfitting Pada Algoritma Naive Bayes Dan Decision Tree Dengan Teknik Cross Validation. JATI
(Jurnal Mahasiswa Teknik Informatika), 7(1). https://doi.org/10.36040/jati.v7i1.6329.
Fitria, A. and Samudra, G. (2025). Edukasi Pemberantasan Sarang Nyamuk (PSN) sebagai Upaya
Pencegahan Demam Beradarah Dengue di Kelurahan Kejambon Kecamatan Tegal Timur Kota Tegal.
JABI: Jurnal Abdimas Bhakti Indonesia, 6(1):38–48.
Jawalageri, S., Ghiasi, R., Jalilvand, S., Prendergast, L. J., and Malekjafarian, A. (2024). A data-driven
approach for scour detection around monopile-supported offshore wind turbines using Naive Bayes
classification. Marine Structures, 95. https://doi.org/10.1016/j.marstruc.2023.103565.
Li, L., Zhou, Z., Bai, N., Wang, T., Xue, K. H., Sun, H., He, Q., Cheng, W., and Miao, X. (2022).
Naive Bayes classifier based on memristor nonlinear conductance. Microelectronics Journal, 129.
https://doi.org/10.1016/j.mejo.2022.105574.
Ningsih, R., Hargono, A., and Ratgono, A. (2023). Analisis Masalah Kesehatan pada Program Demam
Berdarah Dengue di Kabupaten Tulungagung Jawa Timur. Malahayati Nursing Journal, 5(8). https:
//doi.org/10.33024/mnj.v5i8.9446.
Nizam Fadli, M., Sudahri Damanik, I., Irawan, E., Tunas Bangsa, S., and Utara, S. (2021). KLIK:
Kajian Ilmiah Informatika dan Komputer Penerapan Metode Naive Bayes Dalam Menentukan Tingkat
Kenyamanan Pada Rumah Sakit Terhadap Pasien. Media Online, 2(3).
Novaldy, F. and Herliana, A. (2021). Penerapan Pso Pada Naive Bayes Untuk Prediksi Harapan Hidup
Pasien Gagal Jantung. Jurnal Responsif : Riset Sains dan Informatika, 3(1). https://doi.org/10.
51977/jti.v3i1.396.
Pascawati, N. A., Sahid, S., Sukismanto, S., and Yuningrum, H. (2022). Faktor yang Berhubungan dengan
Pola Pengelompokkan Kasus Demam Berdarah Dengue (DBD) di Temanggung, Jawa Tengah. Balaba:
Jurnal Litbang Pengendalian Penyakit Bersumber Binatang Banjarnegara. https://doi.org/10.
22435/blb.v18i1.5957.
Rianti, E., Metasari, D., and Surahman S, F. (2023). Hubungan Trombosit Dan Hematokrit Dengan
Kejadian DBD Di Rumah Sakit Tiara Sella Kota Bengkulu Tahun 2022. Jurnal Vokasi Kesehatan, 2(2).
https://doi.org/10.58222/juvokes.v2i2.164.
Siregar, S., Hutagaol, A., Damanik, H., and Manurung, S. S. (2021). Gambaran Pengetahuan Keluarga
Tentang Pembuangan Limbah Sampah Terhadap Pencegahan Dbd Di Lingkungan V Kelurahan Labuhan
Deli. Jurnal Ilmiah Keperawatan Imelda, 7(2). https://doi.org/10.52943/jikeperawatan.
v7i2.400.
Suhendar, A. H., Rohmawati, A. A., and Prasetyowati, S. S. (2024). Performance of CART Time-Based
Feature Expansion in Dengue Classification Index Rate. Sinkron, 9(1). https://doi.org/10.
33395/sinkron.v9i1.13023.
Tandjungbulu, Y. F., Virgiawan, A. R., Widarti, W., and Suparmin, F. R. (2025). Tinjauan Hasil
Pemeriksaan NS1 Dan IgG/IgM Dengue Metode Imunokromatografi Terhadap Hasil Pemeriksaan
Total Jumlah Dan Indeks Trombosit Pada Penderita Demam Dengue. Media Kesehatan Politeknik
Kesehatan Makassar, 20(1):216–226. https://doi.org/10.32382/medkes.v20i1.1439.
Watratan, A. F., B, A. P., and Moeis, D. (2020). Implementasi Algoritma Naive Bayes Untuk Memprediksi
Tingkat Penyebaran Covid-19 Di Indonesia. Journal of Applied Computer Science and Technology,
1(1). https://doi.org/10.52158/jacost.v1i1.9.
Widianawati, E. and Widiyanti, T. (2022). Prediksi Sebaran Kasus DBD Selama Pandemi Covid 19
Di Unit Rawat Inap Rumah Sakit Telogorejo Tahun 2020. Infokes: Jurnal Ilmiah Rekam Medis dan
Informatika Kesehatan, 12(1). https://doi.org/10.47701/infokes.v12i1.1333.
Yeremia Tiopan Pandapotan Purba, I. T. (2024). Integrasi Algoritma Naive Bayes Dan Website Untuk
Deteksi Dini Penyakit DBD Di RSUD. DR. Pirngadi. Bulletin of Information Technology (BIT), 5(1).







