Penerapan Algoritma Klasifikasi Naive Bayes dalam Klasifikasi KebutuhanPerawatan Pasien Demam Berdarah Dengue

Authors

  • Moch Anjas Aprihartha universitas dian nuswantoro
  • Zulhandi Putrawan Universitas Dian Nuswantoro
  • Dicky Zulhan Universitas Dian Nuswantoro

DOI:

https://doi.org/10.30812/upgrade.v3i1.5457

Keywords:

classification, DHF, Naive Bayes, patients

Abstract

Dengue fever (DF) is an illness caused by the Dengue virus, transmitted to humans through the bite of female Aedes aegypti mosquitoes, and the rise in DF cases often leads to a surge in hospital visits that can result in shortages of beds and medical personnel. In severe conditions, patients require treatment from health professionals experienced in managing this disease, and with advancements in scientific methods, classification techniques have become essential in identifying the severity level of DF patients to determine immediate and necessary treatment. This study aims to classify DF patients who require inpatient care by applying the Naive Bayes method to 230 observation records obtained from medical data of DF patients at Anwar Makkatutu Hospital in Bantaeng Regency during the 2019–2020 period, with model performance evaluated using a confusion matrix. The findings show that the Naive Bayes algorithm demonstrates fairly good performance in identifying patients who need hospitalization and those who do not, indicated by its AUC, accuracy, sensitivity, and specificity values of 0.702, 70.11%, 59.09%, and 81.40%, respectively. These results support more efficient allocation of limited healthcare resources and offer practical implications for clustering DF patients who require medical attention, enabling health authorities to improve planning, prepare adequate medical facilities, and optimize treatment readiness, while also contributing valuable insights to the scientific literature on related topics.

References

Anwar, S., Faujiah, R. L., Hartati, T., and Tohidi, E. (2024). Jurnal Informatika dan Rekayasa Perangkat

Lunak Klasifikasi Penentuan Tingkat Penyakit Demam Berdarah dengan menggunakan Algoritma

Naive Bayes (Studi Kasus Puskesmas Nagreg). Jurnal Informatika dan Rekayasa Perangkat Lunak,

6(1):205–212.

Aprihartha, M. A., Prasetya, J., and Fallo, S. I. (2024). Implementasi CART-Real Adaboost dalam

Memprediksi Minat Pelanggan Membeli Sepatu. Jurnal EurekaMatika, 12(1):35–46.

Bugis, H. (2022). Metode Naive Bayes Untuk Memprediksi Penyakit Stroke. Jurnal SISKOM-KB (Sistem

Komputer dan Kecerdasan Buatan), 6(1). https://doi.org/10.47970/siskom-kb.v6i1.317.

Desfita, S., Azzahra, M., Zulriyanti, N., Putri, M. N., and Anggraini, S. (2021). Jurnal Pengabdian Kesehatan

Komunitas (Journal of Community Health Service). Jurnal Pengabdian Kesehatan Komunitas,

01(1):20–31.

Dissa Nur Olivia, Suherman, and Sekarputri, A. L. (2025). Pengaruh Faktor Cuaca (Curah Hujan,

Kelembapan, dan Suhu) Terhadap Kejadian DBD. Health and Medical Sciences, 2(3):16. https:

//doi.org/10.47134/phms.v2i3.412.

Firmansyach, W. A., Hayati, U., and Arie Wijaya, Y. (2023). Analisa Terjadinya Overfitting Dan

Underfitting Pada Algoritma Naive Bayes Dan Decision Tree Dengan Teknik Cross Validation. JATI

(Jurnal Mahasiswa Teknik Informatika), 7(1). https://doi.org/10.36040/jati.v7i1.6329.

Fitria, A. and Samudra, G. (2025). Edukasi Pemberantasan Sarang Nyamuk (PSN) sebagai Upaya

Pencegahan Demam Beradarah Dengue di Kelurahan Kejambon Kecamatan Tegal Timur Kota Tegal.

JABI: Jurnal Abdimas Bhakti Indonesia, 6(1):38–48.

Jawalageri, S., Ghiasi, R., Jalilvand, S., Prendergast, L. J., and Malekjafarian, A. (2024). A data-driven

approach for scour detection around monopile-supported offshore wind turbines using Naive Bayes

classification. Marine Structures, 95. https://doi.org/10.1016/j.marstruc.2023.103565.

Li, L., Zhou, Z., Bai, N., Wang, T., Xue, K. H., Sun, H., He, Q., Cheng, W., and Miao, X. (2022).

Naive Bayes classifier based on memristor nonlinear conductance. Microelectronics Journal, 129.

https://doi.org/10.1016/j.mejo.2022.105574.

Ningsih, R., Hargono, A., and Ratgono, A. (2023). Analisis Masalah Kesehatan pada Program Demam

Berdarah Dengue di Kabupaten Tulungagung Jawa Timur. Malahayati Nursing Journal, 5(8). https:

//doi.org/10.33024/mnj.v5i8.9446.

Nizam Fadli, M., Sudahri Damanik, I., Irawan, E., Tunas Bangsa, S., and Utara, S. (2021). KLIK:

Kajian Ilmiah Informatika dan Komputer Penerapan Metode Naive Bayes Dalam Menentukan Tingkat

Kenyamanan Pada Rumah Sakit Terhadap Pasien. Media Online, 2(3).

Novaldy, F. and Herliana, A. (2021). Penerapan Pso Pada Naive Bayes Untuk Prediksi Harapan Hidup

Pasien Gagal Jantung. Jurnal Responsif : Riset Sains dan Informatika, 3(1). https://doi.org/10.

51977/jti.v3i1.396.

Pascawati, N. A., Sahid, S., Sukismanto, S., and Yuningrum, H. (2022). Faktor yang Berhubungan dengan

Pola Pengelompokkan Kasus Demam Berdarah Dengue (DBD) di Temanggung, Jawa Tengah. Balaba:

Jurnal Litbang Pengendalian Penyakit Bersumber Binatang Banjarnegara. https://doi.org/10.

22435/blb.v18i1.5957.

Rianti, E., Metasari, D., and Surahman S, F. (2023). Hubungan Trombosit Dan Hematokrit Dengan

Kejadian DBD Di Rumah Sakit Tiara Sella Kota Bengkulu Tahun 2022. Jurnal Vokasi Kesehatan, 2(2).

https://doi.org/10.58222/juvokes.v2i2.164.

Siregar, S., Hutagaol, A., Damanik, H., and Manurung, S. S. (2021). Gambaran Pengetahuan Keluarga

Tentang Pembuangan Limbah Sampah Terhadap Pencegahan Dbd Di Lingkungan V Kelurahan Labuhan

Deli. Jurnal Ilmiah Keperawatan Imelda, 7(2). https://doi.org/10.52943/jikeperawatan.

v7i2.400.

Suhendar, A. H., Rohmawati, A. A., and Prasetyowati, S. S. (2024). Performance of CART Time-Based

Feature Expansion in Dengue Classification Index Rate. Sinkron, 9(1). https://doi.org/10.

33395/sinkron.v9i1.13023.

Tandjungbulu, Y. F., Virgiawan, A. R., Widarti, W., and Suparmin, F. R. (2025). Tinjauan Hasil

Pemeriksaan NS1 Dan IgG/IgM Dengue Metode Imunokromatografi Terhadap Hasil Pemeriksaan

Total Jumlah Dan Indeks Trombosit Pada Penderita Demam Dengue. Media Kesehatan Politeknik

Kesehatan Makassar, 20(1):216–226. https://doi.org/10.32382/medkes.v20i1.1439.

Watratan, A. F., B, A. P., and Moeis, D. (2020). Implementasi Algoritma Naive Bayes Untuk Memprediksi

Tingkat Penyebaran Covid-19 Di Indonesia. Journal of Applied Computer Science and Technology,

1(1). https://doi.org/10.52158/jacost.v1i1.9.

Widianawati, E. and Widiyanti, T. (2022). Prediksi Sebaran Kasus DBD Selama Pandemi Covid 19

Di Unit Rawat Inap Rumah Sakit Telogorejo Tahun 2020. Infokes: Jurnal Ilmiah Rekam Medis dan

Informatika Kesehatan, 12(1). https://doi.org/10.47701/infokes.v12i1.1333.

Yeremia Tiopan Pandapotan Purba, I. T. (2024). Integrasi Algoritma Naive Bayes Dan Website Untuk

Deteksi Dini Penyakit DBD Di RSUD. DR. Pirngadi. Bulletin of Information Technology (BIT), 5(1).

Downloads

Published

2025-08-23

Issue

Section

New Submission

How to Cite

Aprihartha, M. A., Putrawan, Z., & Zulhan, D. (2025). Penerapan Algoritma Klasifikasi Naive Bayes dalam Klasifikasi KebutuhanPerawatan Pasien Demam Berdarah Dengue. UPGRADE : Jurnal Pendidikan Teknologi Informasi, 3(1), 34-42. https://doi.org/10.30812/upgrade.v3i1.5457