Robust Singular Value Decomposition Method on Minor Outlier Data

  • Bernadhita Herindri Samodera Utami STMIK Pringsewu
  • Trisnawati Trisnawati STMIK Pringsewu
  • Rani Pratiwi STMIK Pringsewu
  • Miswan Gumanti STMIK Pringsewu
Keywords: Outlier, Minor outlier, Robust, Singular value, Decomposition

Abstract

In multivariate statistics, Singular Value Decomposition (SVD) for a data matrix containing outliers does not provide data that can be analyzed optimally. This study aims to overcome outlier data using the Robust Singular Value Decomposition (RSVD) method and compare it with the SVD method. The analysis using the RSVD method includes several steps, namely determining the initial predictive value of the vector u and regressing it then normalizing the estimator vector β and carrying out the iteration process until convergent results are obtained. The results of this study indicate that the RSVD for dealing with minor outliers data is not influenced by initial estimates. The RSVD method is strongly influenced by the large amount of outliers data, the more extreme outliers data, the more iterations are.

References

Aa, N. . Van der, Morsche, H. G. Ter, & Mattheij, R. R. M. (2007). Ela Computation of Eigenvalue and Eigenvector. Electronic Journal Of Linear Algebra, 16(1/2), 300–314.
Anton, H. (1987). Aljabar Linear Elementer (Jakarta). Erlangga.
Bali, J. L., Boente, G., Tyler, D. E., & Wang, J. L. (2011). Robust Functional Principal Components: A Projection-Pursuit Approach. The Annals of Statistics, 39(6), 2852–2882.
Bretscher, O. (1997). Linear Algebra with Applications. New York: Prentice-Hall Inc.
Filzmoser, P., & Gregorich, M. (2020). Multivariate Outlier Detection in Applied Data Analysis: Global, Local, Compositional and Cellwise Outliers. Mathematical Geosciences, 12(2), 1–18.
Härdle, W. K., & Simar, L. (2015). Applied Multivariate Statistical Analysis (4th ed.). Berlin: Springer.
Huber, P. J., & Ronchetti, E. M. (2011). Robust Statistics (2nd ed.). New Jersey: John Wiley & Sons.
Liu, L., Hawkins, D. M., Gosh, S., & Young, S. S. (2003). Robust Singular Value Decomposition Analysis of Microarray Data. Proceedings of the National Academy of Sciences of the USA, 100, 167–172.
Locantore, N., Marron, J. S., Simpson, D. G., Tripoli, N., Zhang, J. T., Cohen, K. L., … Cohen, K. L. (1999). Robust Principal Component Analysis for Functional Data. Test, 8(1), 1–73.
Neter, J., Wasserman, W., and Kutner, M. H. (1990). Applied Linear Statistical Model. New York: Richard D Irwin Inc.
Ren, J., Li, X., & Haupt, J. (2017). Robust PCA via Tensor Outlier Pursuit. Conference Record - Asilomar Conference on Signals, Systems and Computers, 1744–1749.
Valverde-albacete, & J, F. (2020). The Singular Value Decomposition over Completed Idempotent Semifields. Mathematics, 8(9), 1–39.
Zhang, L., Marron, J.S., Shen, H., and Z. Z. (2007). Singular Value Decomposition and Its Visualization. Journal of Computational Graphical Statistics, 16, 833–854.
Zhang, L., Shen, H., Huang, J. Z. (2013). ). Robust Regularized Singular Value Decomposition with Application to Mortality Data. The Annals of Applied Statistics, 7(3), 1–23.
Zhou, P., & Feng, J. (2017). Outlier Robust Tensor PCA. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2263–2271.
Published
2020-09-29
How to Cite
[1]
B. Utami, T. Trisnawati, R. Pratiwi, and M. Gumanti, “Robust Singular Value Decomposition Method on Minor Outlier Data”, Jurnal Varian, vol. 4, no. 1, pp. 19-24, Sep. 2020.
Section
Articles

Most read articles by the same author(s)