Finding the Factors Influencing the Severity of Traffic Accident Victims in Sleman Regency Using Ordinal Logistic Regression Analysis
Abstract
Special Region of Yogyakarta (Daerah Istimewa Yogyakarta, DIY) is well-known for its tourist, cultural, and educational attractions, but it also has a high accident rate. Sleman Regency is among the DIY regions with the greatest number of traffic accidents. According to Yogyakarta Police records, Sleman Regency had 1,825 traffic incidents in 2022, while 637 accidents occurred there in a short period of time in 2023, specifically from January to April. To stop the rising number of people injured in road accidents, this issue needs to be taken into account. The objective of this study was to examine the profile of traffic accidents that happened in Sleman Regency between January and April of 2023 and use the ordinal logistic regression method to find characteristics that influence the severity of traffic accidents. Sleman Regency traffic accident data was used in this study. The opponent's vehicle factor, with the category of four or more wheeled vehicles and non-motorized vehicles, is one of the elements that influences the severity of traffic accident victims in Sleman Regency, according to the study's findings.
References
Pengemudi dengan Analisis Regresi Logistik Ordinal. Jurnal Matematika Integratif, 18(2), 167. https : / / doi . org / 10 .
24198/jmi.v18.n2.41317.167-177
Aqib, M., Mehmood, R., Alzahrani, A., & Katib, I. (2020). In-Memory Deep Learning Computations on GPUs for Prediction of
Road Traffic Incidents Using Big Data Fusion [Series Title: EAI/Springer Innovations in Communication and Computing].
In R. Mehmood, S. See, I. Katib, & I. Chlamtac (Eds.), Smart Infrastructure and Applications (pp. 79–114). Springer
International Publishing. https://doi.org/10.1007/978-3-030-13705-2 4
Armstrong, J. S. (2012). Illusions in regression analysis. International Journal of Forecasting, 28(3), 689–694. https://doi.org/
10.1016/j.ijforecast.2012.02.001
Bahiru, T. K., Kumar Singh, D., & Tessfaw, E. A. (2018). Comparative Study on Data Mining Classification Algorithms for Predicting Road Traffic Accident Severity. 2018 Second International Conference on Inventive Communication and
Computational Technologies (ICICCT), 1655–1660. https://doi.org/10.1109/ICICCT.2018.8473265
Benoit, K. (2012). Multinomial and Ordinal Logistic Regression.
Hidayati, A., & Hendrati, L. Y. (2017). Traffic Accident Risk Analysis by Knowledge, the Use of Traffic Lane, and Speed. Jurnal
Berkala Epidemiologi, 4(2), 275. https://doi.org/10.20473/jbe.v4i2.2016.275-287
Hosmer, D. W., & Lemeshow, S. (2000, September). Applied Logistic Regression (1st ed.). Wiley. https : / / doi . org / 10 . 1002 /
0471722146
Hu, L., Bao, X., Wu, H., & Wu, W. (2020). A Study on Correlation of Traffic Accident Tendency with Driver Characters Using
In-Depth Traffic Accident Data. Journal of Advanced Transportation, 2020, 1–7. https://doi.org/10.1155/2020/9084245
Janati, C. D. (2023, April). Dear Pemudik, Ini Titik-Titik Rawan Kecelakaan Lalu Lintas di Sleman. Retrieved October 28, 2024,
from https://regional.espos.id/dear-pemudik-ini-titik-titik-rawan-kecelakaan-lalu-lintas-di-sleman-1596986
Law of the Republic of Indonesia No. 22 of. (2009). Traffict and Road Transport. https://peraturan.bpk.go.id/Details/38654/uuno-22-tahun-2009
Lu, P., Wang, H., & Tolliver, D. (2019). Prediction of Bridge Component Ratings Using Ordinal Logistic Regression Model (J. Li,
Ed.). Mathematical Problems in Engineering, 2019(1), 9797584. https://doi.org/10.1155/2019/9797584
Maulidina, F., Rustam, Z., Hartini, S., Wibowo, V. V. P., Wirasati, I., & Sadewo, W. (2021). Feature optimization using Backward
Elimination and Support Vector Machines (SVM) algorithm for diabetes classification. Journal of Physics: Conference
Series, 1821(1), 012006. https://doi.org/10.1088/1742-6596/1821/1/012006
Maylinda, R., & Permana, D. (2019). Faktor-Faktor Yang Mempengaruhi Tingkat Keparahan Korban Kecelakaan Lalu Lintas Di
Kota Padang Menggunakan Analisis Regresi Logistik Ordinal [Number: 3]. Journal of Mathematics UNP, 4(3), 55–59.
https://doi.org/10.24036/unpjomath.v4i3.7190
Misbahuddin, M., & Hasan, I. (2022, August). Analisis Data Penelitian dengan Statistik (Edisi Kedua). Bumi Aksara.
Putri, N. I., & Budyanra, B. (2020). Penerapan Regresi Logistik Ordinal dengan Proportional Odds Model pada Determinan Tingkat
Stres Akademik Mahasiswa. Seminar Nasional Official Statistics, 2019(1), 368–378. https : / / doi . org / 10 . 34123 /
semnasoffstat.v2019i1.104
Silvia, C., Wilandari, Y., & Hoyyi, A. (2015). Ketepatan Klasifikasi Tingkat Keparahan Korban Kecelakaan Lalu Lintas Menggunakan
Metode Regresi Logistik Ordinal dan Fuzzy K-Nearest Neighbor in Every Class [Number: 3 Publisher: Department of
Statistics, Faculty of Science and Mathematics, Universitas Diponegoro]. Jurnal Gaussian, 4(3), 441–451. https://doi.org/
10.14710/j.gauss.4.3.441-451
Statistics Indonesia. (2023). Daerah istimewa yogyakarta province in figures 2023. BPS Statistics of D.I Yogyakarta Province.
https://yogyakarta.bps.go.id
Wicaksono, D., Fathurochman, R. A., Riyanto, B., & Wicaksono, Y. (2014). Analisis Kecelakaan Lalu Lintas (Studi Kasus -Jalan
Raya Ungaran - Bawen) [Number: 2 Publisher: Departemen Teknik Sipil, Fakultas Teknik Universitas Diponegoro]. Jurnal
Karya Teknik Sipil, 3(2), 345–355. https://ejournal3.undip.ac.id/index.php/jkts/article/view/5102
Yang, J., Han, S., & Chen, Y. (2023). Prediction of Traffic Accident Severity Based on Random Forest (I. Ghosh, Ed.). Journal of
Advanced Transportation, 2023, 1–8. https://doi.org/10.1155/2023/7641472
Zain, I., & Zakariyah, Z. (2015). Analisis Regresi Logistik Ordinal pada Prestasi Belajar Lulusan Mahasiswa di ITS Berbasis SKEM
[Publisher: Sepuluh Nopember Institute of Technology]. Jurnal Sains dan Seni ITS, 4(1), 15585. https://doi.org/10.
12962/j23373520.v4i1.9403
This work is licensed under a Creative Commons Attribution 4.0 International License.