Predicting Stock Markets Using Binary Logistic Regression Based on Bry-Boschan Algorithm

  • Mujiati Dwi Kartikasari Universitas Islam Indonesia, Indonesia
  • Renanta Dzakiya Nafalana Universitas Islam Indonesia, Indonesia
Keywords: Binary Logistics Regression, Bry-Boschan, IDX Composite, Macroeconomics, Stock Market

Abstract

In the stock market, there are bullish and bearish terms that are reflected in the movement of the stock price index. One of the stock price indexes listed on the Indonesia Stock Exchange (IDX) is the IDX Composite. Stock market conditions fluctuate along with changes in stock prices that move randomly, while investors expect market conditions to be active (bullish market). Several factors influence the movement of the IDX Composite, one of which is macroeconomic factors. The purpose of this research is to find out the condition of stock market as well as predict its condition using macroeconomics indicators. The method used to determine stock market conditions (bullish or bearish) is the Bry-Boschan algorithm, while the method used to predict the stock market using macroeconomic indicators is the binary logistic regression method. The Bry-Boschan algorithm is widely used to detect peaks and troughs in business cycle analysis. Binary logistic regression is used to model data with responses that have two categories or are in the form of binary numbers. Results show that the IDX Composite experienced 42 times (month) bearish periods and 191 times (month) experienced bullish periods. The obtained model has an accuracy value of 81.55%.

References

Ali, S. S., Mubeen, M., Lal, I., & Hussain, A. (2018). Prediction of Stock Performance by Using Logistic Regression Model: Evidence from Pakistan Stock Exchange (PSX). Asian Journal of Empirical Research, 8(7), 247–258. https://doi.org/10.18488/journal.1007/2018.8.7/1007.7.247.258
Barus, O. P., & Wijaya, C. (2021). Implementasi Metode Neural Network Backpropagation dalam Prediksi Indeks Harga Saham Gabungan (IHSG). SEMINASTIKA, 3(1), 79–85. https://doi.org/10.47002/seminastika.v3i1.252
Blanchard, O. J. (2017). Macroeconomics (7th ed.). Pearson Education, Inc.
Ekonomi, J. S., & Sampurna, D. S. (2016). Analisis Pengaruh Faktor-Faktor Ekonomi Makro Terhadap IHSG Di Bursa Efek Indonesia (BEI). Jurnal Stei Ekonomi, 25(01), 54–73. https://doi.org/https://doi.org/10.36406/jemi.v25i01.71
Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression. (3rd ed.). John Wiley & Sons, Inc.
Husnan, S. (2015). Dasar-Dasar Teori Portofolio dan Analisis Sekuritas (Edisi 5). UPP STIM YKPN.
Kaur, S. (2020). Lead Profile of Monetary Indicators for Indian Growth Cycles. Palarch’s Journal Of Archaeology Of Egypt/Egyptology, 17(6). https://archives.palarch.nl/index.php/jae/article/view/1893
Krisna, A. A. G. A., & Wirawati, N. G. P. (2013). Pengaruh Inflasi, Nilai Tukar Rupiah, Suku Bunga SBI pada Indeks Harga Saham Gabungan di BEI. E-Jurnal Akutansi Universitas Udayana, 3(2), 421–435. https://ojs.unud.ac.id/index.php/akuntansi/article/view/5518
Luvsannyam, D., Batmunkh, K., & Buyankhishig, K. (2019). Dating the business cycle: Evidence from Mongolia. Central Bank Review, 19(2), 59–66. https://doi.org/10.1016/j.cbrev.2019.06.001
Novianto, A. (2017). Analisis Pengaruh nilai tukar (Kurs) Dollar Amerika/Rupiah, Tingkat Suku Bunga SBI, Inflasi dan Jumlah Uang Beredar terhadap Indeks Harga Saham Gabungan di Bursa Efek Indonesia. In Skripsi Jurusan Manajemen Fakultas Ekonomi Universitas Dipenogoro. Semarang. https://repofeb.undip.ac.id/6015/
Pratiwi, R., & Dewi, A. F. (2021). Analisis Regresi Logistik Biner pada Pengaruh Harga, Kualitas Pelayanan dan Promosi terhadap Kepuasan Pelanggan dalam Menggunakan Jasa Layanan Grab di Kabupaten Lamongan. Inferensi, 4(2), 77–84. https://doi.org/10.12962/j27213862.v4i2.8637
Safitri, R. B., Setyowati, T., & Rachman, N. Y. (2021). The Effect of Inflation, Interest Rate and Rupiah Exchange Rate on JCI in Food and Beverage Manufacturing Companies Registered on The Indonesian Stock Exchange (IDX). Majalah Ilmiah Bijak, 18(1), 128–143. http://ojs.stiami.ac.id
Samsul, M. (2015). Pasar Modal dan Manajemen Portofolio (Edisi 2). Erlangga.
Sasono, H. (2022). Analisis Pengaruh Jumlah Penduduk, Inflasi, Pertumbuhan Ekonomi, Harga Emas, Kurs Dollar, SBI Dan Indek Gini Terhadap IHSG. Jurnal Ilmu Sosial, 1(2). http://bajangjournal.com/index.php/JISOS
Syarina, D. P. (2020). Analisis Pengaruh Nilai Tukar Rupiah, Inflasi dan Indeks Dow Jones Terhadap Indeks Harga Saham Gabungan (IHSG) Di Bursa Efek Indonesia (BEI). Kindai, 16(3), 542–562. https://doi.org/https://doi.org/10.35972/kindai.v17i1.590
Triani, L. F. (2013). Faktor-Faktor yang Mempengaruhi Perubahan Indeks Harga Saham di Jakarta Islamic Index Selama Tahun 2011. Jurnal Organisasi Dan Manajemen, 9(2), 162–178. https://doi.org/https://doi.org/10.33830/jom.v9i2.45.2013
Tüzen, M. F., Nuray, F. A. K., & Kuru, İ. (2022). Determining the Business Cycle of Turkey. Romanian Statistical Review, 2022(1), 40–54.
Widoatmodjo, S. (2012). Cara Sehat Investasi di Pasar Modal: Pengantar Menjadi Investor Profesional (Edisi Revisi). Elex Media Komputindo.
Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2017). Data Mining: Practical Machine Learning Tools and Techniques (4nd ed.). Morgan Kaufmann.
Wu, S., & Lee, W. (2015). Intertemporal Risk–Return Relationships in Bull and Bear Markets. International Review of Economics and Finance, 38, 308–325. https://doi.org/https://doi.org/10.1016/j.iref.2015.03.008
Published
2023-05-16
How to Cite
[1]
M. Kartikasari and R. Nafalana, “Predicting Stock Markets Using Binary Logistic Regression Based on Bry-Boschan Algorithm”, Jurnal Varian, vol. 6, no. 2, pp. 127 - 136, May 2023.
Section
Articles