Comparison of K-Means and Fuzzy C-Means Methods in Regencies/Cities Grouping in Kalimantan Based on Educational Indicators

  • Gerald Claudio Messakh Universitas Mulawarman, Indonesia
  • Memi Nor Hayati Universitas Mulawarman, Indonesia
  • Sifriyani Sifriyani Universitas Mulawarman, Indonesia
Keywords: Education Indicators, FCM, K-Means, Standard Deviation Ratio

Abstract

Cluster analysis is an analysis that aims to classify data based on the similarity of specific
characteristics. The clustering methods used in this research are K-Means and Fuzzy C-Means
(FCM). K-Means is a partition-based non-hierarchical data grouping method. FCM is a clustering
technique in which the existence of each data is determined by the degree of membership. The
purpose of this study is to classify regencies/cities in Kalimantan based on education indicators in
2021 using K-Means and FCM and find out which method is better to use between K-Means and
FCM based on the ratio of the standard deviation. Based on the results of the analysis, it's concluded
that K-Means is the better method with the ratio of the standard deviation within a cluster against the
standard deviation between clusters of 0.6052 which produces optimal clusters of 2 clusters, namely
the first cluster consisting of 14 Regencies/Cities, while the second cluster consists of 42
Regencies/Cities in Kalimantan.

References

Abdullah, D., Susilo, S., Ahmar, A. S., Rusli, R., & Hidayat, R. (2022). The application of K-means clustering for
province clustering in Indonesia of the risk of the COVID-19 pandemic based on COVID-19 data. Quality
and Quantity, 56(3), 1283–1291.
Barakbah, A. R., & Arai, K. (2004). Determining Constraints of Moving Variance to Find Global Optimum and
Make Automatic Clustering. Industrial Electronics Seminar (IES) 2004, 409–413.
Direktorat Statistik Kesejahteraan Rakyat. (2021). Statistik Kesejahteraan Rakyat. Badan Pusat Statistik.
Ghozali, I. (2016). Aplikasi Analisis Multivariete Dengan Program IBM SPSS 23 (8th ed.). Badan Penerbit
Universitas Diponegoro.
Jollyta, D., Ramdhan, W., & Zarlis, M. (2020). Konsep Data Mining dan Penerapan. Deepublish.
Kakushadze, Z., & Yu, W. (2017). *K-means and cluster models for cancer signatures. Biomolecular Detection and
Quantification, 13(August), 7–31.
Kusuma, D. T., Agani, N., Ticom, J., & No, V. (2015). Prototipe Komparasi Model Clustering Menggunakan
Metode K-Means Dan FCM untuk Menentukan Strategi Promosi : Study Kasus Sekolah Tinggi Teknik-PLN
Jakarta. 3(3), 1–10.
Ls, D., Lesnussa, Y. A., Talakua, M. W., & Matdoan, M. Y. (2021). Analisis Klaster untuk Pengelompokkan
Kabupaten/Kota di Provinsi Maluku Berdasarkan Indikator Pendidikan dengan Menggunakan Metode Ward.
Jurnal Statistika Dan Aplikasinya, 5(1), 51–60.
Mahmudi, Goejantoro, R., & Amijaya, F. D. T. (2021). Comparison of C-Means and Fuzzy C-Means Methods in
the Districts/Cities on the Island of Kalimantan Based on the 2019 HDI Indicators. Jurnal EKSPONENSIAL,
12(2), 193–1999.
Nurmin, D., Hayati, M. N., & Goejantoro, R. (2022). Penerapan Metode Fuzzy C-Means Pada Pengelompokan
Kabupaten/Kota di Pulau Kalimantan Berdasarkan Indikator Kesejahteraan Rakyat Tahun 2020.
Eksponensial, 13(2), 189–196.
Purnamasari, S. B., Yasin, H., & Wuryandari, T. (2014). Pemilihan Cluster Optimum Pada Fuzzy C-means (Studi
Kasus: Pengelompokan Kabupaten/kota Di Provinsi Jawa Tengah Berdasarkan Indikator Indeks. Jurnal
Gaussian, 3(3), 491–498.
Putri, A. L. R., & Dwidayati, N. (2021). Analisa Perbandingan K-Means Dan Fuzzy C-Means Dalam
Pengelompokan Daerah Penyebaran Covid-19 Indonesia. UNNES Journal Of Mathematics, 10(2), 4–7.
Roger Jang, J.-S. (2000). 01_NeuroFuzzyApproach.pdf (p. 614).
Siregar, Y. K. (2016). Analisis perbandingan algoritma Fuzzy C-Means dan K-Means. Annual Research Seminar
2016, 2(1), 151–155.
Suyanto. (2018). Machine learning : tingkat dasar dan lanjut. Informatika.
Triyanto, W. A. (2015). Algoritma K-Medoids Untuk Penentuan Strategi Pemasaran Produk. Simetris : Jurnal
Teknik Mesin, Elektro Dan Ilmu Komputer, 6(1), 183.
Yulianto, S., & Hidayatullah, K. H. (2016). Analisis Klaster Untuk Pengelompokan Kabupaten/Kota Di Provinsi
Jawa Tengah Berdasarkan Indikator Kesejahteraan Rakyat. Statistika, 2(1), 56–63.
Published
2023-10-31
How to Cite
[1]
G. Messakh, M. Hayati, and S. Sifriyani, “Comparison of K-Means and Fuzzy C-Means Methods in Regencies/Cities Grouping in Kalimantan Based on Educational Indicators”, Jurnal Varian, vol. 7, no. 1, pp. 107 - 122, Oct. 2023.
Section
Articles