Peningkatan Akurasi Klasifikasi Ketidaktepatan Waktu Kelulusan Mahasiswa Menggunakan Metode Boosting Neural Network
DOI:
https://doi.org/10.30812/varian.v3i2.651Keywords:
Level of accuracy, Classification, Boosting Neural Network, Feedforward Neural NetworkAbstract
Supervised learning in Machine learning is used to overcome classification problems with the Artificial Neural Network (ANN) approach. ANN has a few weaknesses in the operation and training process if the amount of data is large, resulting in poor classification accuracy. The results of the classification accuracy of Artificial Neural Networks will be better by using boosting. This study aims to develop a Boosting Feedforward Neural Network (FANN) classification model that can be implemented and used as a form of classification model that results in better accuracy, especially in the classification of the inaccuracy of Terbuka University students. The results showed the level of accuracy produced by the Feedforward Neural Network (FFNN) method had an accuracy rate of 72.93%. The application of boosting on FFN produces the best level of accuracy which is 74.44% at 500 iterations
References
Mijwel, M. M. (2018). Artificial Neural Networks Advantages and Disadvantages. Retrieved from https://www.researchgate.net/publication/323665827_Artificial_Neural_Networks_Advantages_and_Disadvantages
Muzakkir, I., Syukur, A., & Dewi, I. N. (2014). PENINGKATAN AKURASI ALGORITMA BACKPROPAGATION DENGAN SELEKSI FITUR PARTICLE SWARM OPTIMIZATION DALAM PREDIKSI PELANGGAN TELEKOMUNIKASI YANG HILANG. Jurnal Pseudocode, 1(1), 1–12.
Powers, D. M. W. (2011). Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. International Journal of Machine Learning, 37–63.
Rifai, B. (2013). Algoritma Neural Network Untuk Prediksi Penyakit Jantung. Techno Nusa Mandiri, IX(1), 1–9.
Singh, Y., & Chauhan, A. S. (2009). Neural Networks in Data Mining. Journal of Theoretical and Applied Information Technology, 5(6), 37–42.
Somantri, O., & Wiyono, S. (2017). Peningkatan Akurasi Klasifikasi Tingkat Penguasaan Materi Bahan Ajar Menggunakan Jaringan Syaraf Tiruan Dan Algoritma Genetika. Jurnal Teknologi Dan Sistem Komputer, 5(4), 147–152. https://doi.org/10.14710/jtsiskom.5.4.2017.147-152
Suwardika, G., Suniantara, I. K. P., & Hendayanti, N. P. N. (2019). Ketidaktepatan waktu kelulusan mahasiswa universitas terbuka dengan metode boosting cart. Jurnal varian, 2(2), 37–46. https://doi.org/10.30812/varian.v2i2.361
Warsito, B. (2006). Perbandingan Model Feed Forward Neural Network Dan Generalized Regression Neural Network Pada Data Nilai Tukar Yen Terhadap Dolar AS. In Prosiding SPMIPA. (pp. 127–131).
Wezel, M., & Potharst, R. (2007). Improved Customer Choice Predictions using Ensemble Methods. European Journal of Operational Research, 181(1), 436–452. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S0377221706003900
Wu, G., Ren, Y., Li, Y., Kwak, H., & Jang, S. (2009). Research on Parameter Optimization of Neural Networ. International Journal of HybridInformation Technology, 2(1), 81–90.
Yanti, N. (2011). Penerapan Metode Neural Network Dengan Struktur Backpropagation Untuk Prediksi Stok Obat Di Apotek(Studi Kasus : Apotek Abc). In Seminar Nasional APlikasi Teknologi Informasi 2011 (SNATI 2011) (Vol. 2011, pp. 17–18).
Zhang, Y. (2010). New Advance in Machine Learning. Croatia: In-Tech.
Downloads
Published
Issue
Section
How to Cite
Most read articles by the same author(s)
- Dodiy Fahmeyzan, Siti Soraya, Desventri Etmy, Uji Normalitas Data Omzet Bulanan Pelaku Ekonomi Mikro Desa Senggigi dengan Menggunakan Skewness dan Kurtosi , Jurnal Varian: Vol. 2 No. 1 (2018)
- Ulul Azmi, Zilullah Nazir Hadi, Siti Soraya, ARDL METHOD: Forecasting Data Curah Hujan Harian NTB , Jurnal Varian: Vol. 3 No. 2 (2020)
- Luh Putu Safitri Pratiwi, Ni Putu Nanik Hendayanti, I Ketut Putu Suniantara, Perbandingan Pembobotan Seemingly Unrelated Regression – Spatial Durbin Model Untuk Faktor Kemiskinan Dan Pengangguran , Jurnal Varian: Vol. 3 No. 2 (2020)
- Luh Putu Safitri Pratiwi, Shofwan Hanief, I Ketut Putu Suniantara, Pemodelan Menggunakan Metode Spasial Durbin Model untuk Data Angka Putus Sekolah Usia Pendidikan Dasar , Jurnal Varian: Vol. 2 No. 1 (2018)
- I Gede Agus Astapa, Gede Suwardika, I Ketut Putu Suniantara, ANALISIS DATA PANEL PADA KINERJA REKSADANA SAHAM , Jurnal Varian: Vol. 1 No. 2 (2018)
- Didiharyono Didiharyono, Siti Soraya, PENERAPAN ALGORITMA GREEDY DALAM MENENTUKAN MINIMUM SPANNING TREES PADA OPTIMISASI JARINGAN LISTRIK JALA , Jurnal Varian: Vol. 1 No. 2 (2018)
- Ni Putu Nanik Hendayanti, I Ketut Putu Suniantara, Maulida Nurhidayati, Penerapan Support Vector Regression (Svr) Dalam Memprediksi Jumlah Kunjungan Wisatawan Domestik Ke Bali , Jurnal Varian: Vol. 3 No. 1 (2019)
- Gede Suwardika, I Ketut Putu Suniantara, Ni Putu Nanik Hendayanti, Ketidaktepatan Waktu Kelulusan Mahasiswa Universitas Terbuka dengan Metode Boosting Cart , Jurnal Varian: Vol. 2 No. 2 (2019)
- Siti Soraya, Baiq Candra Herawati, Muttahid Shah, Syaharuddin Syaharuddin, Spatial Econometric Model on Economic Growth in West Nusa Tenggara , Jurnal Varian: Vol. 4 No. 2 (2021)
- Siti Soraya, Maulida Nurhidayati, Baiq Candra Herawati, Anthony Anggrawan, Lalu Ganda Rady Putra, Didiharyono D, Forecasting Foreign Tourist Visits to West Nusa Tenggara Using ARIMA Method , Jurnal Varian: Vol. 5 No. 1 (2021)