Penerapan Support Vector Regression (Svr) Dalam Memprediksi Jumlah Kunjungan Wisatawan Domestik Ke Bali
DOI:
https://doi.org/10.30812/varian.v3i1.506Keywords:
Support Vector Regression (SVR), Domestic Tourist, PredictionAbstract
Bali is one of the most popular tourism sectors in Indonesia. In the arena of international tourism, the island of Bali is considered as the most famous national destination compared to other destinations. The high level of domestic tourism visits to Bali annually must be strictly noted especially for local governments and Bali provincial tourism agencies in optimizing facilities, infrastructure to the safety of tourists Visit. Therefore, it takes a method that can predict the number of tourists visiting Bali annually. One method used to predict the number of tourists visiting Bali is Support Vector Regression (SVR). SVR is a method to estimate a mapped function from an input object to a real amount based on the training data. SVR has the same properties about maximizing margins and kernel tricks for mapping nonlinear data. Results of this research. Based on forecasting using MAPE value training data obtained by 11.34% while use data testing of MAPE value obtained by 7.30%. Based on the resulting MAPE value can be categorized well for the number of tourism visitors.
References
[2] “Hubungan Pertumbuhan Ekonomi dengan Sektor Pariwisata,†JEJAK J. Ekon. dan Kebijak., vol. 9, no. 1, 2016.
[3] M. A. Nizar, “Pengaruh Pariwisata Terhadap Pertumbuhan Ekonomi di Indonesia†J. Kepariwisataan Indones., vol. 6, no. 2, pp. 195 – 211, 2011.
[4] D. P. E. P. N. D. P. C. AYOMI, “Balinese Arts and Culture as Tourism Commodity in Bali Tourism Promotion Videos,†Mudra, pp. 299–307, 2017.
[5] W. Himawan, S. Sabana, and A. R. Kusmara, “Pengaruh Pariwisata pada Keberagaman Seni Rupa sebagai Modal Kultural Bali : Studi pada Komunitas dan Perhelatan Seni,†J. Urban Soc. Arts, vol. 3, no. April, pp. 96–101, 2016.
[6] J. Supranto, “Statistik teori dan aplikasi jilid 1 / oleh J. Supranto,†Stat. Teor. dan Apl. jilid 1 / oleh J. Supranto, vol. 2000, no. 2000, pp. 1–99, 2000.
[7] “Methods of Statistical Forecasting,†in Business Forecasting, 2016, pp. 81–141.
[8] L. Surtiningsih, M. T. Furqon, and S. Adinugroho, “Prediksi Jumlah Kunjungan Wisatawan Mancanegara Ke Bali Menggunakan Support Vector Regression dengan Algoritma Genetika,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 8, pp. 2578–2586, 2018.
[9] A. Pratama, R. C. Wihandika, and D. E. Ratnawati, “Implementasi Algoritme Support Vector Machine ( SVM ) untuk Prediksi Ketepatan Waktu Kelulusan Mahasiswa,†J. Pengemb. Teknol. Inf. dan Ilmu Komput. e-ISSN, 2548, 964X, vol. 2, no. 4, pp. 1704–1708, 2018.
[10] R. Amanda, H. Yasin, and P. Alan, “Analisis Support Vector Regression (SVR) dalam Memprediksi Kurs Rupiah Terhadap Dollar Amerika Serikat,†J. Gaussian, vol. 3, no. 4, pp. 849–857, 2014.
[11] M. Jändel, “A neural support vector machine,†Neural Networks, vol. 23, no. 5, pp. 607–613, 2010.
[12] S. Budi, Data Mining Teknik Pemanfaatan Data untuk Keperluan Bisnis. 2007.
[13] S. Makridakis, S. Wheelwright C, and V. E. McGee, Metode dan Aplikasi Peramalan. 1999.
Downloads
Published
Issue
Section
How to Cite
Most read articles by the same author(s)
- Ni Putu Nanik Hendayanti, Maulida Nurhidayati, Perbandingan Metode Seasonal Autoregressive Integrated Moving Average (SARIMA) dengan Support Vector Regression (SVR) dalam Memprediksi Jumlah Kunjungan Wisatawan Mancanegara ke Bali , Jurnal Varian: Vol. 3 No. 2 (2020)
- Luh Putu Safitri Pratiwi, Shofwan Hanief, I Ketut Putu Suniantara, Pemodelan Menggunakan Metode Spasial Durbin Model untuk Data Angka Putus Sekolah Usia Pendidikan Dasar , Jurnal Varian: Vol. 2 No. 1 (2018)
- Gusti Ayu Made Arna Putri, Ni Putu Nanik Hendayanti, Maulida Nurhidayati, PEMODELAN DATA DERET WAKTU DENGAN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE DAN LOGISTIC SMOOTHING TRANSITION AUTOREGRESSIVE , Jurnal Varian: Vol. 1 No. 1 (2017)
- Luh Putu Safitri Pratiwi, Ni Putu Nanik Hendayanti, I Ketut Putu Suniantara, Perbandingan Pembobotan Seemingly Unrelated Regression – Spatial Durbin Model Untuk Faktor Kemiskinan Dan Pengangguran , Jurnal Varian: Vol. 3 No. 2 (2020)
- I Ketut Putu Suniantara, Gede Suwardika, Siti Soraya, Peningkatan Akurasi Klasifikasi Ketidaktepatan Waktu Kelulusan Mahasiswa Menggunakan Metode Boosting Neural Network , Jurnal Varian: Vol. 3 No. 2 (2020)
- Siti Soraya, Maulida Nurhidayati, Baiq Candra Herawati, Anthony Anggrawan, Lalu Ganda Rady Putra, Didiharyono D, Forecasting Foreign Tourist Visits to West Nusa Tenggara Using ARIMA Method , Jurnal Varian: Vol. 5 No. 1 (2021)
- Gede Suwardika, I Ketut Putu Suniantara, Ni Putu Nanik Hendayanti, Ketidaktepatan Waktu Kelulusan Mahasiswa Universitas Terbuka dengan Metode Boosting Cart , Jurnal Varian: Vol. 2 No. 2 (2019)
- I Gede Agus Astapa, Gede Suwardika, I Ketut Putu Suniantara, ANALISIS DATA PANEL PADA KINERJA REKSADANA SAHAM , Jurnal Varian: Vol. 1 No. 2 (2018)
- Ni Putu Ni Putu Nanik Hendayanti, Maulida Nurhidayati, PEMODELAN JUMLAH UANG BEREDAR DAN INFLASI NASIONAL DENGAN VECTOR ERROR CORRECTION MODEL (VECM) , Jurnal Varian: Vol. 1 No. 1 (2017)
- Ni Putu Nanik Hendayanti, Gusti Ayu Made Arna Putri, Maulida Nurhidayati, Ketepatan Klasifikasi Penerima Beasiswa STMIK STIKOM Bali dengan Hybrid Self Organizing Maps dan Algoritma K-Mean , Jurnal Varian: Vol. 2 No. 1 (2018)