A Gaussian Mixture Model Approach to Profiling Stunting Risk Across Indonesian Provinces
DOI:
https://doi.org/10.30812/ijecsa.v4i2.5395Keywords:
Gaussian Mixture Model, Stunting, Clustering, Indonesian Health SurveyAbstract
Stunting is still a major health problem in Indonesia, with notable differences between provinces. Although the national rate has decreased over time, regional gaps continue, emphasizing the role of data in helping to explain what contributes to the issue. This study aims to segment 38 provinces in Indonesia based on maternal and child health indicators associated with stunting prevalence. The variables used include the percentage of low birth weight (LBW) infants, the percentage of infants born short, the percentage of pregnant women with chronic energy deficiency (CED), exclusive breastfeeding (EBF) coverage, prevalence of diarrhea in toddlers, and prevalence of acute respiratory infections (ARI) in toddlers. The clustering analysis was performed using the Gaussian Mixture Model (GMM) with the number of clusters varied from 2 to 7. Model selection was based on the Bayesian Information Criterion (BIC), where the lowest value indicated the optimal model. The results show that the model with two clusters was selected, with a BIC value of 1358.24, which indicates the best balance between model fit and complexity. This clustering reveals that provinces are grouped based on similarities in maternal and child health profiles, not on geographic proximity, meaning that the GMM method does not rely on spatial location to form clusters.
Downloads
References
[1] Kementerian Kesehatan, “Survei Kesehatan Indonesia (SKI) 2023 Dalam Angka,” 2023.
[2] O. Karlsson, R. Kim, B. Bogin, and S. V Subramanian, “Maternal Height-standardized Prevalence of Stunting in 67 Low- and Middle-income Countries.,” J. Epidemiol., vol. 32, no. 7, pp. 337–344, Jul. 2022, doi: 10.2188/jea.JE20200537.
[3] S. C. Sholihah, “Hubungan Berat Badan Lahir Rendah (BBLR) terhadap Kejadian Stunting di Wilayah Kerja Puskesmas Dradah,” Prepotif J. Kesehat. Masy., vol. 7, no. 1, pp. 135–140, 2023, [Online]. Available: https://journal.universitaspahlawan.ac.id/index.php/prepotif/article/view/10859
[4] J. Judiono et al., “Determinant Factors of Short Birth Length Baby as a Risk Factor of Stunting in West Java | Faktor Determinan Panjang Badan Bayi Lahir Pendek sebagai Faktor Risiko Stunting di Jawa Barat,” Amerta Nutr., vol. 7, no. 2, pp. 240–247, 2023, doi: 10.20473/amnt.v7i2.2023.24.
[5] W. Rohmawati, P. D. Wintoro, and T. W. Sari, “Hubungan Kekurangan Energi Kronik Pada Ibu Hamil Dengan Kejadiann Stunting Di Klaten,” Mot. J. Ilmu Kesehat., vol. 16, no. 1, pp. 40–44, 2021, doi: 10.61902/motorik.v16i1.233.
[6] S. O. M. Ahmed, H. I. A. Hamid, A. Jothi Shanmugam, M. M. G. Tia, and S. M. A. Alnassry, “Impact of exclusive breastfeeding on physical growth,” Clin. Nutr. Open Sci., vol. 49, pp. 101–106, 2023, doi: 10.1016/j.nutos.2023.04.008.
[7] C. Desyanti and T. S. Nindya, “Hubungan Riwayat Penyakit Diare dan Praktik Higiene dengan Kejadian Stunting pada Balita Usia 24-59 Bulan di Wilayah Kerja Puskesmas Simolawang, Surabaya,” Amerta Nutr., vol. 1, no. 3, p. 243, 2017, doi: 10.20473/amnt.v1i3.6251.
[8] A. Muthiyah, “Literature review : Korelasi kejadian ISPA terhadap Stunting,” J. Ilm. Kesehat. Sandi Husada, vol. 10, no. 2, pp. 728–733, 2021.
[9] Z. I. Alfianti, “Pengelompokan Wilayah Kasus Balita Stunting Di Indonesia Menggunakan Algoritma K-Means,” J. Ilm. Inform. Komput., vol. 28, no. 3, pp. 173–185, 2023, doi: 10.35760/ik.2023.v28i3.8876.
[10] D. Satriawan and D. A. Styawan, “Pengelompokkan Provinsi di Indonesia Berdasarkan Faktor Penyebab Balita Stunting Menggunakan Analisis Cluster Hierarki,” J. Stat. dan Apl., vol. 5, no. 1, pp. 61–70, 2021, doi: 10.21009/jsa.05106.
[11] A. R. Maulana, M. Y. Rochayani, and M. A. Mukid, “Regional Clustering for Stunting Prevalence Analysis in Central Java Using Possibilistic Fuzzy C-Means (PFCM) Algorithm,” in International Conference on Computer Sciences, Engineering, and Technology Innovation, Jakarta: IEEE, 2025.
[12] J. Heidari, N. Daneshpour, and A. Zangeneh, “A novel K-means and K-medoids algorithms for clustering non-spherical-shape clusters non-sensitive to outliers,” Pattern Recognit., vol. 155, p. 110639, 2024, doi: https://doi.org/10.1016/j.patcog.2024.110639.
[13] M. Omari, M. Kaddi, K. Salameh, and A. Alnoman, “Advancing Image Compression Through Clustering Techniques: A Comprehensive Analysis,” 2025. doi: 10.3390/technologies13030123.
[14] M. P. Deisenroth, A. A. Faisal, and C. S. Ong, Mathematics for Machine Learning. Cambridge: Cambridge University Press, 2020. doi: DOI: 10.1017/9781108679930.
[15] C. Fraley and A. E. Raftery, “Model-Based Clustering, Discriminant Analysis, and Density Estimation,” J. Am. Stat. Assoc., vol. 97, no. 458, pp. 611–631, 2002.
[16] C. Guyeux, S. Chrétien, G. B. Tayeh, J. Demerjian, and J. Bahi, “Introducing and comparing recent clustering methods for massive data management in the internet of things,” J. Sens. Actuator Networks, vol. 8, no. 4, pp. 1–25, 2019, doi: 10.3390/jsan8040056.
[17] B. Branger et al., “Breastfeeding and respiratory, ear and gastro-intestinal infections, in children, under the age of one year, admitted through the paediatric emergency departments of five hospitals.,” Front. Pediatr., vol. 10, p. 1053473, 2023, doi: 10.3389/fped.2022.1053473.
[18] N. N. Alyarahma, G. Kholijah, and C. Sormin, “Pengelompokan Provinsi di Indonesia Menggunakan Gaussian Mixture Model Berdasarkan Indikator Kemiskinan,” J. Math. Theory Appl., vol. 6, no. 2, pp. 158–167, 2024, doi: 10.31605/jomta.v6i2.4032.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Masithoh Yessi Rochayani, Iut Tri Utami

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.