Clustering Regency in Kalimantan Island Based on People's Welfare Indicators Using Ward's Algorithm with Principal Component Analysis Optimization
DOI:
https://doi.org/10.30812/ijecsa.v4i2.5363Keywords:
People's Welfare Indicators, Principal Component Analysis, Silhouette Coefficient, Ward's AlgorithmAbstract
Cluster analysis is used to group objects based on similar characteristics, so that objects in one cluster are more homogeneous than objects in other clusters. One method that is widely used in hierarchical clustering is Ward's algorithm. This method works by minimizing the sum of squared distances between objects in one cluster (within-cluster variance) to produce optimal clustering. However, one important assumption in using this method is that there is no high correlation between variables, or in other words, the data must be free from multicollinearity. Multicollinearity can cause distortion in distance calculation, resulting in less accurate clustering results. To overcome this problem, a Principal Component Analysis (PCA) approach is used to reduce the dimension and eliminate the correlation between variables by forming several mutually independent principal components. This research aims to cluster 56 districts/cities in Kalimantan Island based on 19 indicators of people's welfare in 2023, using Ward's algorithm optimized through PCA. Validation of clustering results is done using the Silhouette Coefficient value to assess the quality of clustering. This research method is a combination of Principal Component Analysis (PCA) and hierarchical clustering using Ward’s algorithm. PCA was applied to reduce 19 welfare-related indicators into four principal components that retained most of the essential information in the dataset. The clustering process based on these components resulted in two optimal clusters, as determined by a Silhouette Coefficient value of 0.651, which indicates a moderately strong cluster structure. The results of this research are that the first cluster consists of 47 districts/cities characterized by relatively low welfare levels, while the second cluster comprises 9 districts/cities with comparatively higher welfare conditions. These findings imply the existence of considerable disparities in welfare among regions on Kalimantan Island. The results can be used as a reference for policymakers in formulating more targeted and equitable development strategies
Downloads
References
[1] T. Apriliana and E. Widodo, “Analisis Cluster Hierarki untuk Pengelompokan Provinsi di Indonesia berdasarkan Jumlah Base Transceiver Station dan Kekuatan Sinyal,” KONSTELASI Konvergensi Teknol. dan Sist. Inf., vol. 3, no. 2, pp. 286–296, 2023, doi: 10.24002/konstelasi.v3i2.7143.
[2] D. Andiani, S. Dwi, R. Septiani, and A. Riana, “Analisis Teknik non-Hierarki untuk Pengelompokan Kabupaten/Kota di Provinsi Jawa Barat Berdasarkan Indikator Kesejahteraan Rakyat 2020,” J. Ris. Mat. dan Sains Terap., vol. 21, no. 1, pp. 21–28, 2022.
[3] Purnomo et al., Analisis Data Multivariat. Banyumas: Omera Pustaka, 2022.
[4] R. A. Andyani, M. Q. Shobri, M. A. Baihaqi, P. B. Al-Kubro, and M. S. Adhantoro, “Aplikasi Metode Ward dengan Berbagai Pengukuran Jarak ( Studi Kasus : Klasifikasi Tingkat Perekonomian di Indonesia ),” J. Ilm. Kampus Mengajar, vol. 4, no. 2, pp. 177–190, 2024, doi: 10.56972/jikm.v4i2.208.
[5] N. Afira and A. W. Wijayanto, “Analisis Cluster dengan Metode Partitioning dan Hierarki pada Data Informasi Kemiskinan Provinsi di Indonesia Tahun 2019,” Komputika J. Sist. Komput., vol. 10, no. 2, pp. 101–109, 2021, doi: 10.34010/komputika.v10i2.4317.
[6] R. Fikri, A. Mushardiyanto, M. N. Laudza’Banin, K. Maureen, and H. Patria, “Pengelompokan Kabupaten/Kota di Indonesia Berdasarkan Informasi Kemiskinan Tahun 2020 Menggunakan Metode K-Means Clustering Analysis,” Semin. Nas. Tek. dan Manaj. Ind., vol. 1, no. 1, pp. 190–199, 2021, doi: 10.28932/sentekmi2021.v1i1.76.
[7] G. Enzellina and D. Suhaedi, “Penggunaan Metode Principal Component Analysis dalam Menentukan Faktor Dominan,” J. Ris. Mat., pp. 101–110, 2022, doi: 10.29313/jrm.v2i2.1192.
[8] Y. P. Anggriani, A. Arif, and Febriansyah, “Implementasi Algoritma K-Means Clustering Dalam Menentukan Blok Tanaman Sawit Produktif Pada PT Arta Prigel,” J. Komtika (Komputasi dan Inform., vol. 8, no. 1, pp. 22–32, 2024, doi: 10.36040/jati.v8i2.9225.
[9] N. A. Nabilah, H. Perdana, and E. Sulistianingsih, “Pengelompokan Provinsi Di Indonesia Berdasarkan Indikator Kesejahteraan Masyarakat Dengan Algoritma K-Means++,” Bul. Ilm. Math. Stat. dan Ter., vol. 13, no. 3, pp. 419–426, 2024.
[10] N. Oktaviani, A. Fauzan, and G. Widyastuti, “Pengelompokan Kabupaten / Kota di Jawa Barat Berdasarkan Tingkat Kesejahteraan Masyarakat Menggunakan K-Means Cluster,” Emerg. Stat. Data Sci. J., vol. 2, no. 2, pp. 290–301, 2024.
[11] W. S. F. Hariadi, S. Martha, and H. Perdana, “Klasterisasi Kabupaten/Kota Di Pulau Kalimantan Berdasarkan Indikator Kesejahteraan Dengan Two-Step Cluster,” Bul. Ilm. Math. Stat. dan Ter., vol. 14, no. 1, pp. 29–36, 2025.
[12] Hikmah, Fardinah, L. Qadrini, and E. Tande, “Analisis Klaster Pengelompokan Kecamatan di Sulawesi Barat Berdasarkan Indikator Pendidikan,” J. Mat. Sains, dan Pembelajarannya, vol. 8, no. 2, pp. 188–196, 2022, doi: 10.31605/saintifik.v8i2.383.
[13] I. N. Hasanah and A. Sofro, “Analisis Cluster Berdasarkan Dampak Ekonomi Di Indonesia Akibat Pandemi Covid-19,” MATHunesa J. Ilm. Mat., vol. 10, no. 2, pp. 239–248, 2022, doi: 10.26740/mathunesa.v10n2.p239-248.
[14] D. Dwitasari and M. R. Yudhanegara, “Analisis Klaster untuk Hubungan antara Kemampuan Komunikasi Matematis dengan Kemampuan Pemecahan Masalah Menggunkan K-Means,” J. Educ., vol. 10, no. 3, pp. 1025–1033, 2024, [Online]. Available: https://doi.org/10.31949/educatio.v10i3.8234.
[15] G. F. Ibanez and G. W. Wiriasto, “Kombinasi Principal Component Analysis dengan Algoritma K-Means untuk Klasterisasi Data Stunting,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 5, no. 1, pp. 131–141, 2024, doi: 10.30865/klik.v5i1.1977.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Eva Lestari Ningsih, Siti Mahmuda, Memi Nor Hayati

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
How to Cite
Most read articles by the same author(s)
- Anjani Anjani, Memi Nor Hayati, Surya Prangga, Handling Imbalanced Data in K-Nearest Neighbor Algorithm using Synthetic Minority Oversampling Technique-Nominal Continuous , International Journal of Engineering and Computer Science Applications (IJECSA): Vol. 4 No. 2 (2025): September 2025