Optimizing the Amount of Production Using Hybrid Fuzzy Logic and Census II
DOI:
https://doi.org/10.30812/matrik.v22i3.2938Keywords:
Production quantity optimization, Fuzzy logic, Cencus II, ForecastingAbstract
Companies should do planning before the production process. Production planning is expected to avoid excessive or insufficient product stocks that harm the company. This study aims to help a plastic spoon company in Gresik, East Java to determine the optimal amount of production using the Fuzzy method. The input variables used are the amount of demand and supply. However, the amount of demand that fluctuated, especially during the Covid-19 pandemic, made it difficult for the company to estimate the amount of demand in the upcoming production period. Therefore, in this study, the amount of demand is calculated from the results of forecasting with the Cencus II method. The results of the study provide an accuracy of the recommendations for the amount of production of 77% and an accuracy of forecasting results of 82%.
Downloads
References
[2] F. Izzatunnisaa and E. Prasetyaningsih, “Perencanaan Produksi dan Persediaan untuk Mengurangi Keterlambatan dan Biaya Penalti,†J. Ris. Tek. Ind., vol. 2, no. 2, pp. 117–128, 2022, doi: 10.29313/jrti.v2i2.1250.
[3] A. Eunike, N. W. Setyanto, R. Yuniarti, I. Hamdala, R. P. Lukodono, and A. A. Fanani, Perencanaan Produksi dan Pengendalian Persediaan, Revisi. UB Press Malang, 2021.
[4] K. Belmo and M. S. Neno, “Analisis Biaya-Volume-Laba sebagai Alat Perencanaan Laba pada Pabrik Tahu Pink Jaya – Oebufu, Kupang,†J. Manag., vol. 13, no. 3, pp. 285–298, 2020, doi: https://doi.org/10.35508/jom.v13i3.3308.
[5] M. B. Soeltanong and C. Sasongko, “Perencanaan Produksi dan Pengendalian Persediaan pada Perusahaan Manufaktur,†J. Ris. Akunt. Perpajak., vol. 8, no. 01, pp. 14–27, 2021, doi: 10.35838/jrap.2021.008.01.02.
[6] E. A. Rachma, “Optimasi Perencanaan Produksi dengan Menggunakan Model Sistem Dinamik di PT X,†vol. 2, no. 1, pp. 36–42, 2020, doi: 10.30998/joti.v2i1.4425.
[7] F. Ahmad, “Penentuan Metode Peramalan pada Produksi Part New Granada Bowl ST di PT.X,†JISI J. Integr. Sist. Ind., vol. 7, no. 1, pp. 31–39, 2020, doi: https://doi.org/10.24853/jisi.7.1.31-39.
[8] E. Tjandra, S. Limanto, and A. Indrawan, “Rekomendasi Pembelian Barang Pada Sistem Retail Dengan Metode Dekomposisi Census II,†Teknika, vol. 8, no. 2, pp. 126–132, 2019, doi: 10.34148/teknika.v8i2.222.
[9] M. J. Siregar, “Pengendalian Stok Spareparts Mobil Dengan Metode EOQ dan Min-Max Inventory,†J. Serambi Eng., vol. 6, no. 3, pp. 2096–2101, 2021, doi: 10.32672/jse.v6i3.3121.
[10] S. E. R. Yunita, H. J. Wattimanela, and M. S. N. Van Delsen, “Penerapan Fuzzy Inference System Tipe Mamdani Untuk Menentukan Jumlah Produksi Roti Berdasarkan Data Jumlah Permintaan Dan Persediaan (Studi Kasus Pabrik Cinderela Bread House Di Kota Ambon),†BAREKENG J. Ilmu Mat. dan Terap., vol. 14, no. 1, pp. 79–90, 2020, doi: 10.30598/barekengvol14iss1pp079-090.
[11] R. Taufiq and H. P. Sari, “Rancang Bangun Sistem Pendukung Keputusan Penentuan Jumlah Produksi Menggunakan Metode Fuzzy Tsukamoto,†J. Tek., vol. 8, no. 1, pp. 6–10, 2019, doi: 10.31000/jt.v8i1.1589.
[12] A. Shoniya and A. Jazuli, “Penentuan Jumlah Produksi Pakaian Dengan Metode Fuzzy Tsukamoto Studi Kasus Konveksi Nisa,†JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 4, no. 1, pp. 54–65, 2019, doi: 10.29100/jipi.v4i1.1068.
[13] V. M. Nasution and G. Prakarsa, “Optimasi Produksi Barang Menggunakan Logika Fuzzy Metode Mamdani,†J. Media Inform. Budidarma, vol. 4, no. 1, pp. 129–135, 2020, doi: 10.30865/mib.v4i1.1719.
[14] R. Purwandito, H. Suyitno, and Alamsyah, “Penerapan Sistem Inferensi Fuzzy Metode Mamdani untuk Penentuan Jumlah Produksi Eggroll,†Unnes J. Math., vol. 8, no. 1, pp. 107–116, 2019, doi: 10.15294/ujm.v8i1.15745.
[15] K. Muflihunna and M. Mashuri, “Penerapan Metode Fuzzy Mamdani dan Metode Fuzzy Sugeno dalam Penentuan Jumlah Produksi,†Unnes J. Math., vol. 11, no. 1, pp. 27–37, 2022, doi: 10.15294/ujm.v11i1.50060.
[16] D. L. Rahakbauw, F. J. Rianekuay, and Y. A. Lesnussa, “Penerapan Metode Fuzzy Mamdani Untuk Memprediksi Jumlah Produksi Karet (Studi Kasus: Data Persediaan Dan Permintaan Produksi Karet Pada Ptp Nusantara Xiv (Persero) Kebun Awaya, Teluk Elpaputih, Maluku-Indonesia),†J. Ilm. Mat. Dan Terap., vol. 16, no. 1, pp. 119–127, 2019, doi: 10.22487/2540766x.2019.v16.i1.12764.
[17] C. P. P. Maibang and A. M. Husein, “Prediksi Jumlah Produksi Palm Oil Menggunakan Fuzzy Inference System Mamdani,†J. Teknol. dan Ilmu Komput. Prima, vol. 2, no. 2, pp. 400–407, 2019, doi: 10.34012/jutikomp.v2i2.528.
[18] L. P. Wanti and Lina Puspitasari, “Optimization of the Fuzzy Logic Method for Autism Spectrum Disorder Diagnosis,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 1, pp. 16–24, 2022, doi: 10.29207/resti.v6i1.3599.
[19] B. I. Gunawan and U. Y. Oktiawati, “Sistem Pemantau dan Pengendali Suhu Ruang Server Menggunakan Fuzzy Berbasis Mikrokontroler RobotDyn,†J. Rekayasa Sist. dan Teknol. Inf., vol. 4, no. 1, pp. 1–9, 2020, doi: https://doi.org/10.29207/resti.v4i1.1207.
[20] B. W. I. Taylor, Introducing to Management Schience, vol. 83, no. 3. 2004.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Ahmat Adil, ANALYSIS PROXIMITY MENENTUKAN LOKASI PERKEBUNAN DI LOMBOK BARAT , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 15 No. 1 (2015)
- Ni Ketut Sriwinarti, Andres Faesal, SISTEM INFORMASI DISTRIBUSI PUPUK BERSUBSIDI PADA KECAMATAN GERUNG LOMBOK BARAT , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 15 No. 1 (2015)
- Debby Ummul Hidayah, Pungkas Subarkah, Media Pembelajaran Tentang Klasifikasi Binatang Berbasis Video Animasi 3 Dimensi di SMP Negeri 2 Wangon , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Dewa Ayu Kadek Pramita, Ni Wayan Sumartini Saraswati, I Putu Dedy Sandana, Poria Pirozmand, I Kadek Agus Bisena, Optimizing Hotel Room Occupancy Prediction Using an Enhanced Linear Regression Algorithms , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Wahyu Styo Pratama, Didik Dwi Prasetya, Triyanna Widyaningtyas, Muhammad Zaki Wiryawan, Lalu Ganda Rady Putra, Tsukasa Hirashima, Performance Evaluation of Artificial Intelligence Models for Classification in Concept Map Quality Assessment , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Susandri Susandri, Ahmad Zamsuri, Nurliana Nasution, Yoyon Efendi, Hiba Basim Alwan, The Mitigating Overfitting in Sentiment Analysis Insights from CNN-LSTM Hybrid Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Dairoh Dairoh, Very Kurnia Bakti, Muhammad Naufal, Neural Network dan Particle Swam Optimization untuk Penunjang Keputusan Antipasi Mahasiswa Pra Lulus Bekerja Sesuai Bidang , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Fristi Riandari, Hengki Tamando Sihotang, Husain Husain, Forecasting the Number of Students in Multiple Linear Regressions , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
- lili Tanti, Syahril Efendi, Maya Silvi Lydia, Herman Mawengkang, Model Dynamic Facility Location in Post-Disaster Areas in Uncertainty , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Zilvanhisna Emka Fitri, Lalitya Nindita Sahenda, Sulton Mubarok, Abdul Madjid, Arizal Mujibtamala Nanda Imron, Implementing K-Nearest Neighbor to Classify Wild Plant Leaf as a Medicinal Plants , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
You may also start an advanced similarity search for this article.
.png)











