Optimizing the Amount of Production Using Hybrid Fuzzy Logic and Census II
DOI:
https://doi.org/10.30812/matrik.v22i3.2938Keywords:
Production quantity optimization, Fuzzy logic, Cencus II, ForecastingAbstract
Companies should do planning before the production process. Production planning is expected to avoid excessive or insufficient product stocks that harm the company. This study aims to help a plastic spoon company in Gresik, East Java to determine the optimal amount of production using the Fuzzy method. The input variables used are the amount of demand and supply. However, the amount of demand that fluctuated, especially during the Covid-19 pandemic, made it difficult for the company to estimate the amount of demand in the upcoming production period. Therefore, in this study, the amount of demand is calculated from the results of forecasting with the Cencus II method. The results of the study provide an accuracy of the recommendations for the amount of production of 77% and an accuracy of forecasting results of 82%.
Downloads
References
[2] F. Izzatunnisaa and E. Prasetyaningsih, “Perencanaan Produksi dan Persediaan untuk Mengurangi Keterlambatan dan Biaya Penalti,†J. Ris. Tek. Ind., vol. 2, no. 2, pp. 117–128, 2022, doi: 10.29313/jrti.v2i2.1250.
[3] A. Eunike, N. W. Setyanto, R. Yuniarti, I. Hamdala, R. P. Lukodono, and A. A. Fanani, Perencanaan Produksi dan Pengendalian Persediaan, Revisi. UB Press Malang, 2021.
[4] K. Belmo and M. S. Neno, “Analisis Biaya-Volume-Laba sebagai Alat Perencanaan Laba pada Pabrik Tahu Pink Jaya – Oebufu, Kupang,†J. Manag., vol. 13, no. 3, pp. 285–298, 2020, doi: https://doi.org/10.35508/jom.v13i3.3308.
[5] M. B. Soeltanong and C. Sasongko, “Perencanaan Produksi dan Pengendalian Persediaan pada Perusahaan Manufaktur,†J. Ris. Akunt. Perpajak., vol. 8, no. 01, pp. 14–27, 2021, doi: 10.35838/jrap.2021.008.01.02.
[6] E. A. Rachma, “Optimasi Perencanaan Produksi dengan Menggunakan Model Sistem Dinamik di PT X,†vol. 2, no. 1, pp. 36–42, 2020, doi: 10.30998/joti.v2i1.4425.
[7] F. Ahmad, “Penentuan Metode Peramalan pada Produksi Part New Granada Bowl ST di PT.X,†JISI J. Integr. Sist. Ind., vol. 7, no. 1, pp. 31–39, 2020, doi: https://doi.org/10.24853/jisi.7.1.31-39.
[8] E. Tjandra, S. Limanto, and A. Indrawan, “Rekomendasi Pembelian Barang Pada Sistem Retail Dengan Metode Dekomposisi Census II,†Teknika, vol. 8, no. 2, pp. 126–132, 2019, doi: 10.34148/teknika.v8i2.222.
[9] M. J. Siregar, “Pengendalian Stok Spareparts Mobil Dengan Metode EOQ dan Min-Max Inventory,†J. Serambi Eng., vol. 6, no. 3, pp. 2096–2101, 2021, doi: 10.32672/jse.v6i3.3121.
[10] S. E. R. Yunita, H. J. Wattimanela, and M. S. N. Van Delsen, “Penerapan Fuzzy Inference System Tipe Mamdani Untuk Menentukan Jumlah Produksi Roti Berdasarkan Data Jumlah Permintaan Dan Persediaan (Studi Kasus Pabrik Cinderela Bread House Di Kota Ambon),†BAREKENG J. Ilmu Mat. dan Terap., vol. 14, no. 1, pp. 79–90, 2020, doi: 10.30598/barekengvol14iss1pp079-090.
[11] R. Taufiq and H. P. Sari, “Rancang Bangun Sistem Pendukung Keputusan Penentuan Jumlah Produksi Menggunakan Metode Fuzzy Tsukamoto,†J. Tek., vol. 8, no. 1, pp. 6–10, 2019, doi: 10.31000/jt.v8i1.1589.
[12] A. Shoniya and A. Jazuli, “Penentuan Jumlah Produksi Pakaian Dengan Metode Fuzzy Tsukamoto Studi Kasus Konveksi Nisa,†JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 4, no. 1, pp. 54–65, 2019, doi: 10.29100/jipi.v4i1.1068.
[13] V. M. Nasution and G. Prakarsa, “Optimasi Produksi Barang Menggunakan Logika Fuzzy Metode Mamdani,†J. Media Inform. Budidarma, vol. 4, no. 1, pp. 129–135, 2020, doi: 10.30865/mib.v4i1.1719.
[14] R. Purwandito, H. Suyitno, and Alamsyah, “Penerapan Sistem Inferensi Fuzzy Metode Mamdani untuk Penentuan Jumlah Produksi Eggroll,†Unnes J. Math., vol. 8, no. 1, pp. 107–116, 2019, doi: 10.15294/ujm.v8i1.15745.
[15] K. Muflihunna and M. Mashuri, “Penerapan Metode Fuzzy Mamdani dan Metode Fuzzy Sugeno dalam Penentuan Jumlah Produksi,†Unnes J. Math., vol. 11, no. 1, pp. 27–37, 2022, doi: 10.15294/ujm.v11i1.50060.
[16] D. L. Rahakbauw, F. J. Rianekuay, and Y. A. Lesnussa, “Penerapan Metode Fuzzy Mamdani Untuk Memprediksi Jumlah Produksi Karet (Studi Kasus: Data Persediaan Dan Permintaan Produksi Karet Pada Ptp Nusantara Xiv (Persero) Kebun Awaya, Teluk Elpaputih, Maluku-Indonesia),†J. Ilm. Mat. Dan Terap., vol. 16, no. 1, pp. 119–127, 2019, doi: 10.22487/2540766x.2019.v16.i1.12764.
[17] C. P. P. Maibang and A. M. Husein, “Prediksi Jumlah Produksi Palm Oil Menggunakan Fuzzy Inference System Mamdani,†J. Teknol. dan Ilmu Komput. Prima, vol. 2, no. 2, pp. 400–407, 2019, doi: 10.34012/jutikomp.v2i2.528.
[18] L. P. Wanti and Lina Puspitasari, “Optimization of the Fuzzy Logic Method for Autism Spectrum Disorder Diagnosis,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 1, pp. 16–24, 2022, doi: 10.29207/resti.v6i1.3599.
[19] B. I. Gunawan and U. Y. Oktiawati, “Sistem Pemantau dan Pengendali Suhu Ruang Server Menggunakan Fuzzy Berbasis Mikrokontroler RobotDyn,†J. Rekayasa Sist. dan Teknol. Inf., vol. 4, no. 1, pp. 1–9, 2020, doi: https://doi.org/10.29207/resti.v4i1.1207.
[20] B. W. I. Taylor, Introducing to Management Schience, vol. 83, no. 3. 2004.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Rahman Rahman, Teguh Iman Hermanto, Meriska Defriani, Hyperparamaters Fine Tuning for Bidirectional Long Short Term Memory on Food Delivery , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Rizky Hafizh Jatmiko, Yoga Pristyanto, Investigating The Effectiveness of Various Convolutional Neural Network Model Architectures for Skin Cancer Melanoma Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Munirul Ula, Veri Ilhadi, Zailani Mohamed Sidek, Comparing Long Short-Term Memory and Random Forest Accuracy for Bitcoin Price Forecasting , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Ahmad Naufal Labiib Nabhaan, Rakandhiya Daanii Rachmanto, Arief Setyanto, Characterizing Hardware Utilization on Edge Devices when Inferring Compressed Deep Learning Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Rakandhiya Daanii Rachmanto, Ahmad Naufal Labiib Nabhaan, Arief Setyanto, Deep Learning Model Compression Techniques Performance on Edge Devices , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- M Safii, Rika Setiana, Population Prediction Using Multiple Regression and Geometry Models Based on Demographic Data , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Nella Rosa Sudianjaya, Chastine Fatichah, Segmentation and Classification of Breast Cancer Histopathological Image Utilizing U-Net and Transfer Learning ResNet50 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Arief Herdiansah, Sistem Pendukung Keputusan Referensi Pemilihan Tujuan Jurusan Teknik di Perguruan Tinggi Bagi Siswa Kelas XII IPA Mengunakan Metode AHP , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
- Lusiana Efrizoni, Junadhi Junadhi, Agustin Agustin, Optimization of Content Recommendation System Based on User Preferences Using Neural Collaborative Filtering , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Samsurizal Samsurizal, Arif Nur Afandi, Mohamad Rodhi Faiz, Artificial Intelligence Enhanced Direct Current Fast ChargingIntegration for Electric Vehicles on 20 kV Grids: A Technical andOntological Study , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
You may also start an advanced similarity search for this article.
.png)











