Optimizing the Amount of Production Using Hybrid Fuzzy Logic and Census II
DOI:
https://doi.org/10.30812/matrik.v22i3.2938Keywords:
Production quantity optimization, Fuzzy logic, Cencus II, ForecastingAbstract
Companies should do planning before the production process. Production planning is expected to avoid excessive or insufficient product stocks that harm the company. This study aims to help a plastic spoon company in Gresik, East Java to determine the optimal amount of production using the Fuzzy method. The input variables used are the amount of demand and supply. However, the amount of demand that fluctuated, especially during the Covid-19 pandemic, made it difficult for the company to estimate the amount of demand in the upcoming production period. Therefore, in this study, the amount of demand is calculated from the results of forecasting with the Cencus II method. The results of the study provide an accuracy of the recommendations for the amount of production of 77% and an accuracy of forecasting results of 82%.
Downloads
References
[2] F. Izzatunnisaa and E. Prasetyaningsih, “Perencanaan Produksi dan Persediaan untuk Mengurangi Keterlambatan dan Biaya Penalti,†J. Ris. Tek. Ind., vol. 2, no. 2, pp. 117–128, 2022, doi: 10.29313/jrti.v2i2.1250.
[3] A. Eunike, N. W. Setyanto, R. Yuniarti, I. Hamdala, R. P. Lukodono, and A. A. Fanani, Perencanaan Produksi dan Pengendalian Persediaan, Revisi. UB Press Malang, 2021.
[4] K. Belmo and M. S. Neno, “Analisis Biaya-Volume-Laba sebagai Alat Perencanaan Laba pada Pabrik Tahu Pink Jaya – Oebufu, Kupang,†J. Manag., vol. 13, no. 3, pp. 285–298, 2020, doi: https://doi.org/10.35508/jom.v13i3.3308.
[5] M. B. Soeltanong and C. Sasongko, “Perencanaan Produksi dan Pengendalian Persediaan pada Perusahaan Manufaktur,†J. Ris. Akunt. Perpajak., vol. 8, no. 01, pp. 14–27, 2021, doi: 10.35838/jrap.2021.008.01.02.
[6] E. A. Rachma, “Optimasi Perencanaan Produksi dengan Menggunakan Model Sistem Dinamik di PT X,†vol. 2, no. 1, pp. 36–42, 2020, doi: 10.30998/joti.v2i1.4425.
[7] F. Ahmad, “Penentuan Metode Peramalan pada Produksi Part New Granada Bowl ST di PT.X,†JISI J. Integr. Sist. Ind., vol. 7, no. 1, pp. 31–39, 2020, doi: https://doi.org/10.24853/jisi.7.1.31-39.
[8] E. Tjandra, S. Limanto, and A. Indrawan, “Rekomendasi Pembelian Barang Pada Sistem Retail Dengan Metode Dekomposisi Census II,†Teknika, vol. 8, no. 2, pp. 126–132, 2019, doi: 10.34148/teknika.v8i2.222.
[9] M. J. Siregar, “Pengendalian Stok Spareparts Mobil Dengan Metode EOQ dan Min-Max Inventory,†J. Serambi Eng., vol. 6, no. 3, pp. 2096–2101, 2021, doi: 10.32672/jse.v6i3.3121.
[10] S. E. R. Yunita, H. J. Wattimanela, and M. S. N. Van Delsen, “Penerapan Fuzzy Inference System Tipe Mamdani Untuk Menentukan Jumlah Produksi Roti Berdasarkan Data Jumlah Permintaan Dan Persediaan (Studi Kasus Pabrik Cinderela Bread House Di Kota Ambon),†BAREKENG J. Ilmu Mat. dan Terap., vol. 14, no. 1, pp. 79–90, 2020, doi: 10.30598/barekengvol14iss1pp079-090.
[11] R. Taufiq and H. P. Sari, “Rancang Bangun Sistem Pendukung Keputusan Penentuan Jumlah Produksi Menggunakan Metode Fuzzy Tsukamoto,†J. Tek., vol. 8, no. 1, pp. 6–10, 2019, doi: 10.31000/jt.v8i1.1589.
[12] A. Shoniya and A. Jazuli, “Penentuan Jumlah Produksi Pakaian Dengan Metode Fuzzy Tsukamoto Studi Kasus Konveksi Nisa,†JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 4, no. 1, pp. 54–65, 2019, doi: 10.29100/jipi.v4i1.1068.
[13] V. M. Nasution and G. Prakarsa, “Optimasi Produksi Barang Menggunakan Logika Fuzzy Metode Mamdani,†J. Media Inform. Budidarma, vol. 4, no. 1, pp. 129–135, 2020, doi: 10.30865/mib.v4i1.1719.
[14] R. Purwandito, H. Suyitno, and Alamsyah, “Penerapan Sistem Inferensi Fuzzy Metode Mamdani untuk Penentuan Jumlah Produksi Eggroll,†Unnes J. Math., vol. 8, no. 1, pp. 107–116, 2019, doi: 10.15294/ujm.v8i1.15745.
[15] K. Muflihunna and M. Mashuri, “Penerapan Metode Fuzzy Mamdani dan Metode Fuzzy Sugeno dalam Penentuan Jumlah Produksi,†Unnes J. Math., vol. 11, no. 1, pp. 27–37, 2022, doi: 10.15294/ujm.v11i1.50060.
[16] D. L. Rahakbauw, F. J. Rianekuay, and Y. A. Lesnussa, “Penerapan Metode Fuzzy Mamdani Untuk Memprediksi Jumlah Produksi Karet (Studi Kasus: Data Persediaan Dan Permintaan Produksi Karet Pada Ptp Nusantara Xiv (Persero) Kebun Awaya, Teluk Elpaputih, Maluku-Indonesia),†J. Ilm. Mat. Dan Terap., vol. 16, no. 1, pp. 119–127, 2019, doi: 10.22487/2540766x.2019.v16.i1.12764.
[17] C. P. P. Maibang and A. M. Husein, “Prediksi Jumlah Produksi Palm Oil Menggunakan Fuzzy Inference System Mamdani,†J. Teknol. dan Ilmu Komput. Prima, vol. 2, no. 2, pp. 400–407, 2019, doi: 10.34012/jutikomp.v2i2.528.
[18] L. P. Wanti and Lina Puspitasari, “Optimization of the Fuzzy Logic Method for Autism Spectrum Disorder Diagnosis,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 1, pp. 16–24, 2022, doi: 10.29207/resti.v6i1.3599.
[19] B. I. Gunawan and U. Y. Oktiawati, “Sistem Pemantau dan Pengendali Suhu Ruang Server Menggunakan Fuzzy Berbasis Mikrokontroler RobotDyn,†J. Rekayasa Sist. dan Teknol. Inf., vol. 4, no. 1, pp. 1–9, 2020, doi: https://doi.org/10.29207/resti.v4i1.1207.
[20] B. W. I. Taylor, Introducing to Management Schience, vol. 83, no. 3. 2004.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Irma Binti Sya'idah, Sugiyarto Surono, Goh Khang Wen, DynamicWeighted Particle Swarm Optimization - Support Vector Machine Optimization in Recursive Feature Elimination Feature Selection , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Vivin Nur Aziza, Utami Dyah Syafitri, Anwar Fitrianto, Optimizing Currency Circulation Forecasts in Indonesia: A Hybrid Prophet- Long Short Term Memory Model with Hyperparameter Tuning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Achmad Rian Tarmizi, Ahmat Adil, Lilik Widyawati, Optimization of The use of Wireless Lan Devices to Minimize Operational Costs , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
- Indradi Rahmatullah, Gibran Satya Nugraha, Arik Aranta, Feature Selection on Grouping Students Into Lab Specializations for the Final Project Using Fuzzy C-Means , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Muhammad Yunus, Suriyati Suriyati, ANALISA DAN PERANCANGAN SISTEM FUZZY UNTUK PENENTUAN BEASISWA , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 16 No. 1 (2016)
- Nandang Iriadi, Priatno Priatno, Putri Agnes Sulistia, Analisa Kepuasaan Pelanggan dalam Layanan Jasa Travel and Tour pada PT. Denar Pesona Menggunakan Metode Fuzzy Servqual , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Bobby Poerwanto, Baso Ali, Implementasi Algoritma Fuzzy C-Means dalam Mengelompokkan Kecamatan di Tana Luwu Berdasarkan Produktifitas Hasil Perkebunan , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Mohammad Diqi, Ema Utami, Kusrini Kusrini, Ferry Wahyu Wibowo, Leveraging Vector Quantized Variational Autoencoder for Accurate Synthetic Data Generation in Multivariate Time Series , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Ni Gusti Ayu Dasriani, Mayadi Mayadi, Anthony Anggrawan, Klasterisasi Lokasi Promosi PMB Dengan Fuzzy C-means Masa Pandemi Covid 19 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
- Wikky Fawwaz Al Maki, Amien Jafar Makrufi, Support vector machine with a firefly optimization algorithm for classification of apple fruit disease , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
You may also start an advanced similarity search for this article.