K-Means Clustering Analysis pada Persebaran Tingkat Pengangguran Kabupaten/Kota di Sulawesi Selatan
Abstract
This study aims to determine the distribution of districts in South Sulawesi based on unemployment rate using clustering analysis. The unemployment rate indicators are districts minimum wage (UMK) and human development index growth rate (IPM). The algorithm used in this study is k-means clustering. The results of k-means clustering analysis showed that of 24 districts in South Sulawesi are divided into two clusters, namely the high and low unemployment rate. The high employment rate cluster consists of 6 districts, namely Pangkep, Sidrap, Luwu Timur, Palopo, Parepare, and Makassar. The rest, 18 districts are in the low employment rate cluster.
References
Badan Pusat Statistik Provinsi Sulawesi Selatan. 2014a. Berita Resmi Statisti Keadaan Ketenagakerjaan Sulawesi Selatan Agustus 2014. Makassar.
———. 2014b. Statistik Sosial Dan Ekonomi Rumah Tangga Sulawesi Selatan 2014. Makassar.
———. 2017. Berita Resmi Statistik Keadaan Ketenagakerjaan Sulawesi Selatan Agustus 2017. Makassar.
———. 2019. 63 Berita Resmi Statistik Keadaan Ketenagakerjaan Sulawesi Selatan 2019. Makassar.
Govender, P, and V Sivakumar. 2020. “Application of K-Means and Hierarchical Clustering Techniques for Analysis of Air Pollution : A Review ( 1980 – 2019 ).” Atmospheric Pollution Research 11: 40–56.
Harlik, Amri Amir, and Hardiana. 2013. “Faktor-Faktor Yang Mempengaruhi Kemiskinan Dan Pengangguran Di Kota Jambi.” Jurnal Perspektif Pembiayaan dan Pembangunan Daerah 1(2): 109–20.
Itang. 2015. “Faktor Faktor Penyebab Kemiskinan.” Tazkiya, Jurnal Keislaman, kemasyarakatan & kebudayaan 16(1): 1–30.
Jiang, Zoe L et al. 2020. “Efficient Two-Party Privacy-Preserving Collaborative k -Means Clustering Protocol Supporting Both Storage and Computation Outsourcing.” Information Sciences 518: 168–80.
Kakushadze, Zura, and Willie Yu. 2017. “K-Means and Cluster Models for Cancer Signatures.” Biomolecular Detection and Qu antification 13: 7–31.
Poerwanto, B, and R Y Fa’rifah. 2016. “Analisis Cluster K-Means Dalam Pengelompokkan Kemampuan Mahasiswa.” Indonesian Journal of Fundamental Sciences 2(2): 92–96.
Poerwanto, Bobby, and Baso Ali. 2019. “Implementasi Algoritma Fuzzy C-Means Dalam Mengelompokkan Kecamatan Di Tana Luwu Berdasarkan Produktifitas Hasil Perkebunan.” Jurnal MATRIK 19(1): 163–72.
Poerwanto, Bobby, and Riska Yanu Fa’rifah. 2019. “Algoritma K-Means Dalam Mengelompokkan Kecamatan Di Tana Luwu Berdasarkan Hasil Produktifitas Hasil Pertanian.” Jurnal Ilmiah d’COMPUTARE 9(1): 46–51.
Priastiwi, Dian, and Herniawati Retno Handayani. 2019. “Analisis Pengaruh Jumlah Penduduk, Pendidikan, Upah Minimum, Dan PDRB Terhadap Tingkat Pengangguran Terbuka Di Provinsi Sulawesi Selatan.” Diponegoro Journal of Economics 1(1): 159–69.
Rahakbauw, Dorteus L, Lexy J Sinay, and Vilomina Enus. 2017. “Aplikasi Metode Fuzzy C-Means Untuk Menentukan Tingkat Pengangguran.” Jurnal Ilmu Matematika dan Terapan 11(2): 95–100.
Sardar, Tanvir Habib, and Zahid Ansari. 2018. “An Analysis of MapReduce Efficiency in Document Clustering Using Parallel K-Means Algorithm.” Future Computing and Informatics Journal xx: 1–10.
Sibuea, Fitri Larasati, and Andy Sapta. 2017. “Pemetaan Siswa Berprestasi Menggunakan Metode K-Means Clustering.” JURTEKSI, Jurnal Teknologi dan Sistem Informasi IV(1): 85–92.
Sirait, Novlin, and A. A. I. N. Marhaeni. 2005. “Analisis Beberapa Faktor Yang Berpengaruh Terhadap Jumlah Pengangguran Kabupaten / Kota Di Provinsi Bali.” Jurnal Ekonomi Pembangunan Universitas Udayana 2(2): 108–18.
Waworuntu, M. Nanda Variestha, and Muhammad Faisal Amin. 2018. “Penerapan Metode K-Means Pemetaan Calon Penerima JAMKESDA.” KLIK, Kumpulan Jurnal Ilmu Komputer 05(02): 190–200.
Zhu, Jihua et al. 2019. “Efficient Registration of Multi-View Point Sets by K-Means Clustering.” Information Sciences 488: 205–18.