Application of VAR-GARCH for Modeling the Causal Relationship of Stock Prices in the Mining Sub-sector

  • Muhammad Nasrudin Universitas Pembangunan Nasional Veteran Jawa Timur, Indonesia
  • Endah Setyowati Universitas Pembangunan Nasional Veteran Jawa Timur, Indonesia
  • Shindi Shella May Wara Universitas Pembangunan Nasional Veteran Jawa Timur, Indonesia
Keywords: Generalized Autoregressive Conditional, Heteroskedasticity, Jakarta Islamic Index, Stock price, Vector Autoregressive

Abstract

Accurate modeling is expected to minimize risk and maximize profit in investment portfolios, one of
which is in stock price modeling. This research aims to model the causal relationship between stock
prices using the Vector Autoregressive - Generalized Autoregressive Conditional Heteroskedasticity
(VAR-GARCH) model. The VAR-GARCH model is used to overcome heteroscedasticity and model
dynamic volatility. The data used for the modeling consists of daily stock prices from July 2023 to
May 2024 for mining sub-sector companies listed on the Jakarta Islamic Index (JII), including ADMR,
ADRO, and ANTM. The results showed that the VAR(1) model is stable, but this model indicates the
presence of heteroskedasticity or ARCH effects. Therefore, the VAR(1) model was combined with the
GARCH model, and the results showed that the best model is VAR(1)-GARCH(1,1). The VAR(1)-
GARCH(1,1) model is appropriate and meets the homoskedasticity assumptions for modeling the stock
prices of the mining sub-sector in the Jakarta Islamic Index (JII). This indicates that the VAR-GARCH
model could successfully handle the volatility of stock price data. In general, this research is in line
with previous research, i.e., the VAR-GARCH model showed a better model for capturing the volatility
patterns in the data.

References

Azhar, R., Kesumah, F. S. D., Ambya, A., Wisnu, F. K., & Russel, E. (2020). Application of Short-Term Forecasting Models for
Energy Entity Stock Price (Study on Indika Energi Tbk, JII). International Journal of Energy Economics and Policy,
10(1), 294–301. https://doi.org/10.32479/ijeep.8715
Barbaglia, L., Croux, C., & Wilms, I. (2020). Volatility spillovers in commodity markets: A large t-vector autoregressive approach.
Energy Economics, 85, 104555. https://doi.org/10.1016/j.eneco.2019.104555
BEI. (2024). Indeks Saham Syariah. https://www.idx.co.id/Id/Idx-Syariah/Indeks-Saham-Syariah
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. https:
//doi.org/10.1016/0304-4076(86)90063-1
Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation.
Econometrica, 50(4), 987–1007. https://doi.org/10.2307/1912773
Hashmi, S. M., Ahmed, F., Alhayki, Z., & Syed, A. A. (2022). The impact of crude oil prices on Chinese stock markets and selected
sectors: Evidence from the VAR-DCC-GARCH model. Environmental Science and Pollution Research, 29(35), 52560–
52573. https://doi.org/10.1007/s11356-022-19573-5
Hersugondo, H., Ghozali, I., Handriani, E., Trimono, T., & Pamungkas, I. D. (2022). Price Index Modeling and Risk Prediction of
Sharia Stocks in Indonesia. Economies, 10(1), 17. https://doi.org/10.3390/economies10010017
Kilian, L., & Lutkepohl, H. (2017). ¨ Structural Vector Autoregressive Analysis. Cambridge University Press. https://doi.org/10.
1017/9781108164818
Lin, Z. (2018). Modelling and forecasting the stock market volatility of SSE Composite Index using GARCH models. Future Generation Computer Systems, 79, 960–972. https://doi.org/10.1016/j.future.2017.08.033
Manasseh, C. O., Chukwu, N. O., Abada, F. C., Ogbuabor, J. E., Lawal, A. I., & Alio, F. C. (2019). Interactions between stock prices
and exchange rates: An application of multivariate VAR-GARCH model (D. Tokic, Ed.). Cogent Economics & Finance,
7(1), 1681573. https://doi.org/10.1080/23322039.2019.1681573
Massadikov, K. (2021). Volatility Spillovers Between Oil Prices and Stock Returns in Developing Countries. International Journal
of Energy Economics and Policy, 11(4), 121–126. https://doi.org/10.32479/ijeep.11117
Njagi, H. (2018). Modelling the Stock Price Volatility Using Asymmetry Garch and Ann-Asymmetry Garch Models. International
Journal of Data Science and Analysis, 4(4), 46. https://doi.org/10.11648/j.ijdsa.20180404.11
Ponziani, R. M. (2022). Forecasting of Jakarta Islamic Index (JII) returns using Holt-Winters family models. Asian Journal of
Islamic Management (AJIM), 111–122. https://doi.org/10.20885/AJIM.vol3.iss2.art4
Sharma, A., Giri, S., Vardhan, H., Surange, S., Shetty, R., & Shetty, V. (2018). Relationship between Crude Oil Prices and Stock
Market: Evidence from India. International Journal of Energy Economics and Policy, 8(4), 331–337. https://www.
econjournals.com/index.php/ijeep/article/view/4439
Sims, C. A. (1980). Macroeconomics and Reality. Econometrica, 48(1), 1. https://doi.org/10.2307/1912017
Suharsono, A., Ahmad, I. S., Wibisono, A., & Pramesti, W. (2018). Modeling of autoregressive moving average and vector autoregressive for forecasting stock price index in ASEAN countries. International Journal of Mechanical Engineering and
Technology, 9(11), 309–319. http://www.scopus.com/inward/record.url?scp=85057528940&partnerID=8YFLogxK
Suharsono, A., Aziza, A., & Pramesti, W. (2017). Comparison of vector autoregressive (VAR) and vector error correction models
(VECM) for index of ASEAN stock price, 020032. https://doi.org/10.1063/1.5016666
Wei, W. W. S. (2007). Time series analysis: Univariate and multivariate methods (2. ed.). Pearson Addison Wesley.
World Bank. (2020). Commodity Markets Outlook April 2022. Commodity Market.
Yaya, O. S., Adekoya, O. B., Vo, X. V., & Al-Faryan, M. A. S. (2024). Stock Market Efficiency in Asia: Evidence from the
Narayan–Liu–Westerlund’s GARCH-based unit root test. International Journal of Finance & Economics, 29(1), 91–
101. https://doi.org/10.1002/ijfe.2676
Published
2024-11-25
How to Cite
[1]
M. Nasrudin, E. Setyowati, and S. May Wara, “Application of VAR-GARCH for Modeling the Causal Relationship of Stock Prices in the Mining Sub-sector”, Jurnal Varian, vol. 8, no. 1, pp. 89 - 96, Nov. 2024.
Section
Articles