Ketidaktepatan Waktu Kelulusan Mahasiswa Universitas Terbuka dengan Metode Boosting Cart
DOI:
https://doi.org/10.30812/varian.v2i2.361Keywords:
Classification, CART, Boosting, ensembleAbstract
The classification tree method or better known as Classification and Regression Tree (CART) has capabilities in various data conditions, but CART is less stable in changing learning data which will cause major changes in the results of the classification tree prediction. Predictive accuracy of an unstable classifier can be corrected by a combination method of many single classifiers where the prediction results of each classifier are combined into the final prediction through the majority voting process for classification or average voting for regression cases. Boosting ensemble method is one method that combines many classification trees to improve stability and determine classification predictions. This research purpose to improve the stability and predictive accuracy of CART with boosting. The case used in this study is the classification of inaccuracies in the Open University student graduation. The results of the analysis show that boosting is able to improve the accuracy of the classification of the inaccuracy of student graduation which reaches a classification prediction of 75.94% which previously reached 65.41% in the classification tree.
Downloads
Published
Issue
Section
How to Cite
Most read articles by the same author(s)
- Ni Putu Nanik Hendayanti, Maulida Nurhidayati, Perbandingan Metode Seasonal Autoregressive Integrated Moving Average (SARIMA) dengan Support Vector Regression (SVR) dalam Memprediksi Jumlah Kunjungan Wisatawan Mancanegara ke Bali , Jurnal Varian: Vol. 3 No. 2 (2020)
- Luh Putu Safitri Pratiwi, Ni Putu Nanik Hendayanti, I Ketut Putu Suniantara, Perbandingan Pembobotan Seemingly Unrelated Regression – Spatial Durbin Model Untuk Faktor Kemiskinan Dan Pengangguran , Jurnal Varian: Vol. 3 No. 2 (2020)
- I Ketut Putu Suniantara, Gede Suwardika, Siti Soraya, Peningkatan Akurasi Klasifikasi Ketidaktepatan Waktu Kelulusan Mahasiswa Menggunakan Metode Boosting Neural Network , Jurnal Varian: Vol. 3 No. 2 (2020)
- Gusti Ayu Made Arna Putri, Ni Putu Nanik Hendayanti, Maulida Nurhidayati, PEMODELAN DATA DERET WAKTU DENGAN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE DAN LOGISTIC SMOOTHING TRANSITION AUTOREGRESSIVE , Jurnal Varian: Vol. 1 No. 1 (2017)
- Luh Putu Safitri Pratiwi, Shofwan Hanief, I Ketut Putu Suniantara, Pemodelan Menggunakan Metode Spasial Durbin Model untuk Data Angka Putus Sekolah Usia Pendidikan Dasar , Jurnal Varian: Vol. 2 No. 1 (2018)
- I Gede Agus Astapa, Gede Suwardika, I Ketut Putu Suniantara, ANALISIS DATA PANEL PADA KINERJA REKSADANA SAHAM , Jurnal Varian: Vol. 1 No. 2 (2018)
- Ni Putu Nanik Hendayanti, I Ketut Putu Suniantara, Maulida Nurhidayati, Penerapan Support Vector Regression (Svr) Dalam Memprediksi Jumlah Kunjungan Wisatawan Domestik Ke Bali , Jurnal Varian: Vol. 3 No. 1 (2019)
- Ni Putu Nanik Hendayanti, Gusti Ayu Made Arna Putri, Maulida Nurhidayati, Ketepatan Klasifikasi Penerima Beasiswa STMIK STIKOM Bali dengan Hybrid Self Organizing Maps dan Algoritma K-Mean , Jurnal Varian: Vol. 2 No. 1 (2018)