Gold Price Fluctuation Forecasting Based on Newton and Lagrange Polynomial Interpolation

  • Andika Ellena Saufika Hakim Maharani Universitas Bumigora, Indonesia
  • Dea Alvionita Azka Institut Teknologi Muhammadiyah Sumatera, Indonesia
  • Darlena Darlena Akademi Manajemen Komputer dan Informatika, Indonesia
Keywords: Gold Price Prediction, Gold Price Fluctuation, Polynomial Interpolation, Newton Polynomials, Lagrange Polynomials

Abstract

Gold is a highly valuable commodity and an investment opportunity for many people. However, there
are often significant fluctuations in gold prices that affect investment decisions. Various mathematical
forecasting methods have been developed to anticipate gold price fluctuations. This study uses historical
daily data of gold prices during January-May 2023. The method used in this study is the Newton and
Lagrange polynomial interpolation method with several orders to analyze data and forecast gold price
fluctuations. The purpose of this study is to compare the performance and accuracy of the order levels of
the Newton and Lagrange polynomial interpolation forecasting models. In this study, the test data points
and orders are selected so that a range is formed that matches the amount of data available. The test
orders used in this study include orders 2, 3, 5, 6, and 10. This study found that the 2
nd order polynomial
interpolation method is more effective and accurate in forecasting gold price fluctuations compared to
the higher orders tested. This is indicated by the results of the calculation of MAE, RMSE, and MAPE
values in 2
nd order polynomial interpolation which are smaller than in 3
rd
, 5
th
, 6
th, and 10th order
polynomial interpolation. This suggests that a polynomial of 2
nd order has been able to model and
forecast gold price fluctuations well. However, it is important to remember that these conclusions are
based on the data and methods used in this study. Variability in forecasting results can occur depending
on the quality of the data, the time period used, and the interpolation method applied, among others.
Therefore, further research and wider testing needs to be conducted to validate these conclusions.

Author Biographies

Andika Ellena Saufika Hakim Maharani, Universitas Bumigora, Indonesia

Department of Computer Science

Darlena Darlena, Akademi Manajemen Komputer dan Informatika, Indonesia

Department of Informatics Management

References

Anggraeni, D. P., Rosadi, D., Hermansah, H., & Rizal, A. A. (2020). Prediksi Harga Emas Dunia di Masa Pandemi Covid-19
Menggunakan Model ARIMA. Jurnal Aplikasi Statistika & Komputasi Statistik, 12(1), 71–84. doi: 10.34123/jurnalasks.v12i1
.264
Astuti, L. W., Sudarwanto, & Ambarwati, L. (2018). Perbandingan Metode Lagrange dan Metode Newton pada Interpolasi Polinomial
dalam Mengestimasi Harga Saham. JMT (Jurnal Matematika dan Terapan, 2(1), 25–35.
Aulia, R., Sazlin, R. A., Ismayani, L., Sukiman, M., Perwira Negara, H. R., & Ayu Kurniawati, K. R. (2020). Implementasi
Interpolasi Newton Gregory pada Model Matematika Penyebaran Virus Corona di Indonesia (Vol. 3) (No. 1).
Haris, M. A. (2020). Peramalan Harga Emas Dengan Model Generalized Autoregressive Conditional Heteroscedasticity (Garch).
Jurnal Saintika Unpam : Jurnal Sains dan Matematika Unpam, 3(1), 19. doi: 10.32493/jsmu.v3i1.5263
Hariwijaya, M. R. I., Furqon, M. T., & Dewi, C. (2020). Prediksi Harga Emas Dengan Menggunakan Metode Average-Based Fuzzy
Time Series. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 4(4), 1258–1264Hendrian, J., Suparti, S., & Prahutama, A. (2021). Pemodelan Harga Emas Dunia Menggunakan Metode Nonparametrik Polinomial
Lokal Dilengkapi GUI R. Jurnal Gaussian, 10(4), 605–616.
Hurit, R. U., & Nanga, M. Y. (2022). Penerapan Metode Interpolasi Lagrange dalam Memprediksi Jumlah Penduduk Provinsi Nusa
Tenggara Timur. Math Educa Journal, 6(1), 57–62.
Lamabelawa, M. I. J. (2019). Perbandingan Interpolasi Dan Ekstrapolasi Newton. High Education of Organization Archive Quality:
Jurnal Teknologi Informasi, 10(2), 73–80.
Mahena, Y., Rusli, M., & Winarso, E. (2015). Prediksi Harga Emas Dunia Sebagai Pendukung Keputusan Investasi Saham Emas
Menggunakan Teknik Data Mining. Kalbiscentia Jurnal Sains dan Teknologi, 2(1), 36–51.
Muhammad, D. (2011). Penggunaan Metode Newton dan Lagrange pada Interpolasi Polinom Pergerakan Harga Saham : Studi
Kasus Saham PT Adaro Energi Tbk . (Tech. Rep.).
Muhammad Julian, Lukita Ambarwati, & Yudi Mahatma. (2022). Penentuan Derajat Optimum Interpolasi pada Metode Lagrange
dan Metode Newton Gregory dalam Mengestimasi Kasus Pasien Sembuh dari Covid-19 di Indonesia. JMT : Jurnal Matematika
dan Terapan, 4(1), 11–18. doi: 10.21009/jmt.4.1.2
Negara, H. R. P., Ibrahim, M., & Kurniawati, K. R. A. (2020). Mathematical Model of Growth in The Number of Students in NTB
Using Newton-Gregory Polynomial Method. Jurnal Varian, 4(1), 43–50. doi: 10.30812/varian.v4i1.850
Nugroho, B. P. (2018). Implementasi Sistem Untuk Prediksi Harga Emas. Jurnal SAINTEKOM, 8(2), 90–104. doi: 10.33020/
saintekom.v8i2.56
Pangruruk, F. A., & Barus, S. P. (2016). Prediksi Harga Saham Menggunakan Metode Interpolasi Polinom Lagrange. In Prosiding
seminar nasional matematika dan pendidikan matematika (pp. 1–8).
Pangruruk, F. A., & Barus, S. P. (2018a). Prediksi Harga Saham dengan Interpolasi Polinom Newton Gregory Maju. In Program
studi pendidikan matematika fkip ums (pp. 644–650).
Pangruruk, F. A., & Barus, S. P. (2018b). Prediksi Harga Saham Menggunakan Metode Interpolasi Polinom Newton Gregory
Mundur. In Prosiding semadik (pp. 24–29).
Pangruruk, F. A., Barus, S. P., & Siregar, B. (2020). Peramalan Harga Saham Tutup Dengan Metode Interpolasi Polinom Lagrange.
In Prosiding seminar nasional variansi (pp. 118–126).
Pragna, C., Purra, B., Viharika, A., Roshni, G., & Prajna, P. B. (2022). Gold Price Prediction Using Machine Learning Techniques.
International Research Journal of Modernization in Engineering Technology and Science (IRJMETS), 4(05), 117–120.
Pratama, R., Sianipar, R. H., & Wiryajati, I. K. (2014). Pengaplikasian Metode Interpolasi dan Ekstrapolasi Lagrange, Chebyshev,
dan Spline Kubik untuk Memprediksi Angka Pengangguran di Indonesia. Dielektrika, 1(2), 116–121.
Pratiwi, G. A., Jaya, A. I., & Ratianingsih, R. (2017). Aplikasi Metode Polinom Newton Gregory Maju dan Polinom Newton
Gregory Mundur dalam Memprediksi Banyaknya Penduduk Sulawesi Tengah. Jurnal Ilmiah Matematika dan Terapan (JIMT),
14(2), 152–158.
Radhamani, V., Manju, D., Bobby, P. M., Javagar, M., Nivetha, V., & Rinubha, P. (2022). Gold Price Prediction Using ML
Algorithms. YMER, 21(7), 183–192.
Rakhmawati, D., & Nurhalim, M. (2021). Prediksi Harga Emas Berjangka di Masa Pandemi Covid-19 Menggunakan Model Tren
Deterministik. Akuntabel, 18(1), 146–152.
Sihombing, S. C. (2019). Prediksi Hasil Produksi Pertanian Kelapa Sawit di Provinsi Riau dengan Pendekatan Interpolasi Newton
Gregory Forward (NGF). In Prosiding seminar nasional ii hasil litbangyasa industri (pp. 63–70).
Siregar, R. R. A., Djatna, T., Manullang, S. S. M. P., & Saputra, I. (2021). Double Exponential Smoothing Berimputasi LOCF Dan
Linear Interpolation dalam Akurasi Peramalan Harga Harian Emas. KILAT, 10(1), 208–222Sravani, M., Abhilash, C., Divya, T., Vasthav, C., & Priyanka, D. (2021). Gold Price Prediction. International Journal of Creative
Research Thoughts (IJCRT), 9(6), 745–747.
Sunyanti., & Mukhaiyar, U. (2019). Gold Price Prediction Using ARIMA Time Series Model Approach. Procuratio: Jurnal Ilmiah
Manajemen, 7(4), 379–390.
Suryana, Y., & Sen, T. W. (2021). The Prediction of Gold Price Movement by Comparing Naive Bayes, Support Vector Machine,
and K-NN. Jurnal Informatika dan Sains (JISA), 4(2), 112–120. doi: 10.31326/jisa.v4i2.922
Tripurana, N., Kar, B., Chakravarty, S., Paikaray, B. K., & Satpathy, S. (2022). Gold Price Prediction Using Machine Learning
Techniques. In Ceur workshop proceedings (pp. 274–281). doi: 10.22214/ijraset.2021.35831
ul Sami, I., & Junero, K. N. (2017). Predicting Future Gold Rates using Machine Learning Approach. International Journal of
Advanced Computer Science and Applications (IJACSA), 8(12), 92–99. doi: 10.14569/ijacsa.2017.081213
Published
2023-10-31
How to Cite
[1]
A. E. Maharani, D. Azka, and D. Darlena, “Gold Price Fluctuation Forecasting Based on Newton and Lagrange Polynomial Interpolation”, Jurnal Varian, vol. 7, no. 1, pp. 95 - 106, Oct. 2023.
Section
Articles