Analyzing Lightning Strike Susceptibility Using the Elliptical Fitting Method with a Principal Component Analysis Approach

  • Helmalia A. Lovytaji UIN Maulana Malik Ibrahim Malang, Indonesia
  • Rozikan Rozikan Meteorology Climatology and Geophysics Council Class II Pasuruan, Indonesia
  • Djati C. Kuncoro Meteorology Climatology and Geophysics Council Class II Pasuruan, Indonesia
  • Ria Dhea Layla Nur Karisma UIN Maulana Malik Ibrahim Malang, Indonesia https://orcid.org/0000-0002-5941-9565
Keywords: Cloud to ground lightning, Ellipse fitting method, Lightning strike, Principal component analysis

Abstract

Lightning is a high-current discharge that occurs in Cumulonimbus clouds, with CG (Cloud to Ground)
lightning strikes posing significant dangers, especially to human life. Pasuruan, located in the highlands
between mountains and the ocean in Indonesia, is particularly vulnerable to such strikes. This study
aims to mitigate the impact of lightning strikes, particularly in industrial areas like Pasuruan, by delineating lightning-prone areas using a sophisticated methodological approach. Our research employs a
robust Ellipse Fitting Method, parameterized with Principal Component Analysis (PCA), to accurately
define the boundaries of these high-risk zones. The Ellipse Fitting Method, which involves forming
an ellipse from the intersection of a plane and a cone, uses five key parameters: a center point, two
vertex points, and two focus points. PCA is then applied to these parameters to determine the ellipse’s
configuration, with the center point derived from the mean of all data points. The major and minor
axes are defined by the first and second eigenvalues of the principal components, respectively. The size
of the ellipse correlates with the confidence level, with higher confidence resulting in a larger ellipse.
The result of integrating these advanced techniques is the generation of two PCA models from data
collected across 28 sub-districts in Pasuruan, with findings indicating a high level of vulnerability in
Lumbang District and a moderate level of risk in Gempol District. This methodological framework not
only enhances the precision in identifying lightning-prone areas but also provides a scalable approach
for similar studies in other regions. Suggestion for the further research are to overcome extreme points
or extreme points in the PCA confidence ellipse such as MVEE.

References

Anggraini, W., Dwi Gustia Rasyidi, R., Dian Yusandika, A., Sodikin, Rawuni, L., & Amalia, P. (2024). CG ( Cloud-To-Ground
) Lightning Strike Distribution Patterns In Bandar Lampung and South Lampung in 2022 (A. Saregar, R. Umam, & A.
Rahmat, Eds.). E3S Web of Conferences, 482, 03001. https://doi.org/10.1051/e3sconf/202448203001
Badan Pusat Statistik. (2022). Direktori Perusahaan Industri Besar dan Sedang Provinsi Jawa Timur 2022.
Badan Pusat Statistik Kota Pasuruan. (2020, January). Jumlah Penduduk Kota Pasuruan Hasil Sensus Penduduk 2020 (SP2020).
https://pasuruankota.bps.go.id
Davis, C., Engeln, A., Johnson, E. L., McIntosh, S. E., Zafren, K., Islas, A. A., McStay, C., Smith, W. R., & Cushing, T. (2014).
Wilderness Medical Society Practice Guidelines for the Prevention and Treatment of Lightning Injuries: 2014 Update.
Wilderness & Environmental Medicine, 25(4 suppl), S86–S95. https://doi.org/10.1016/j.wem.2014.08.011
Elhaik, E. (2022). Principal Component Analyses (PCA)-based findings in population genetic studies are highly biased and must be
reevaluated. Scientific Reports, 12(1), 14683. https://doi.org/10.1038/s41598-022-14395-4
Faizatin, T. U. (2014). Pemetaan Daerah Rawan Petir Cloud to Ground Positif Wilayah Pasuruan Tahun 2012 Menggunakan Metode
Inverse Distance Weighted. Inovasi Fisika Indonesia, 3(3), 6–10. https://doi.org/10.26740/ifi.v3n3.p%p
Faunia. (2022). Nomor 1 Bukan Gresik Atau Surabaya, Ini 5 Kabupaten Kota dengan Kawasan Industri Terluas di Jawa Timur – The
Industrial News. https://industrialnews.id/nomor-1-bukan-gresik-atau-surabaya-ini-5-kabupaten-kota-dengan-kawasanindustri-terluas-di-jawa-timur/
Forkman, J., Josse, J., & Piepho, H.-P. (2019). Hypothesis Tests for Principal Component Analysis When Variables are Standardized.
Journal of Agricultural, Biological and Environmental Statistics, 24(2), 289–308. https://doi.org/10.1007/s13253-
019-00355-5
Greenacre, M., Groenen, P. J. F., Hastie, T., D’Enza, A. I., Markos, A., & Tuzhilina, E. (2022). Principal component analysis. Nature
Reviews Methods Primers, 2(1), 100. https://doi.org/10.1038/s43586-022-00184-w
Gunawan, T., & Pandiangan, L. N. L. (2014). Analisis Tingkat Kerawanan Bahaya Sambaran Petir dengan Metode Simple Additive
Weighting di Provinsi Bali. Jurnal Meteorologi dan Geofisika, 15(3). https://doi.org/10.31172/jmg.v15i3.221
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate Data Analysis. Cengage.
Harits, M. A., Suardi, I., Marsono, A., Ali, M., & Prayitno Adi, S. (2023). Analysis of lightning vulnerability level in the City of
Mataram and surrounding area using the simple additive weighting method (A. Hakam, Fauzan, S. Subbarayan, & A. Safuan
A. Rashid, Eds.). E3S Web of Conferences, 464, 01014. https://doi.org/10.1051/e3sconf/202346401014
Johnson, R. A., & Wichern, D. W. (2015). Applied Multivariate Statistical Analysis (6th Edition). Pearson Prentice Hall.
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202. https://doi.org/10.
1098/rsta.2015.0202
Kherif, F., & Latypova, A. (2020). Principal component analysis. In Machine Learning (pp. 209–225). Elsevier. https://doi.org/10.
1016/B978-0-12-815739-8.00012-2
Mashadi. (2018). Geometri Edisi Kedua. https://mashadi.staff.unri.ac.id/files/2018/10/BUKU-GEOMETRI-EDISI-2.pdf
Mora Garc´ıa, M., Riesco Mart´ın, J., Rivas Soriano, L., & De Pablo Davila, F. (2015). Observed impact of land uses and soil types ´
on cloud-to-ground lightning in Castilla-Leon (Spain). Atmospheric Research, 166, 233–238. https://doi.org/10.1016/j.
atmosres.2015.07.009
Narut, F., Wahid, A., & Sumawan, S. (2018). Karakterisasi Peristiwa Petir di Wilayah Kota Kupang Serta Keterkaitannya dengan
Curah Hujan. Jurnal Fisika : Fisika Sains dan Aplikasinya, 3(2), 110–116. https://doi.org/10.35508/fisa.v3i2.611
Nurunnabi, A., Sadahiro, Y., Lindenbergh, R., & Belton, D. (2019). Robust cylinder fitting in laser scanning point cloud data. Measurement, 138, 632–651. https://doi.org/10.1016/j.measurement.2019.01.095
Peterson, M. J., Lang, T. J., Logan, T., Wee Kiong, C., Gijben, M., Holle, R., Kolmasova, I., Marisaldi, M., Montanya, J., Pawar,
S. D., Zhang, D., Brunet, M., & Cerveny, R. S. (2022). New WMO Certified Megaflash Lightning Extremes for Flash
Distance and Duration Recorded from Space. Bulletin of the American Meteorological Society, 103(4), 257–261. https:
//doi.org/10.1175/BAMS-D-21-0254.1
Reiml, S., Toth, D., Panayiotou, M., Fahn, B., Karim, R., Behar, J. M., Rinaldi, C. A., Razavi, R., Rhode, K. S., Brost, A., &
Mountney, P. (2016, March). Interactive visualization for scar transmurality in cardiac resynchronization therapy. In R. J.
Webster & Z. R. Yaniv (Eds.). https://doi.org/10.1117/12.2214737
Sanderson, D. (2019). Modeling the Distribution of Lightning Strike Distances Outside a Preexisting Lightning Area. Theses and
Dissertations. https://scholar.afit.edu/etd/2194
Shindo, T. (2018). Lightning striking characteristics to tall structures. IEEJ Transactions on Electrical and Electronic Engineering, 13(7), 938–947. https://doi.org/10.1002/tee.22649
Sterpka, C., Dwyer, J., Liu, N., Hare, B. M., Scholten, O., Buitink, S., Veen, S. T., & Nelles, A. (2021). The Spontaneous Nature
of Lightning Initiation Revealed. Geophysical Research Letters, 48(23), e2021GL095511. https : / / doi . org / 10 . 1029 /
2021GL095511
Sulistiyono, W., Ramadhan, R. S., & Donni, Y. (2023). Kajian Kondisi Atmosfer Saat Kejadian Hujan Lebat di Kota Surakarta
Menggunakan Analisis Skala Meteorologi. OPTIKA: Jurnal Pendidikan Fisika, 7(1), 32–45. https://doi.org/10.37478/
optika.v7i1.2626
Sun, S., & Wang, H. (2018). Principal component analysis-based features generation combined with ellipse models-based classification criterion for a ventricular septal defect diagnosis system. Australasian Physical & Engineering Sciences in
Medicine, 41(4), 821–836. https://doi.org/10.1007/s13246-018-0676-1
Susanto, E. (2018). Penentuan Daerah Rawan Bencana Sambaran Petir di Wilayah Kabupaten dan Kota Bandung Jawa Barat. Jurnal
Ilmu dan Inovasi Fisika, 2(2), 137–144. https://doi.org/10.24198/jiif.v2i2.19728
Syarief, I. S. (2023, January). Paling Banyak Se-Jatim, 700 Ribu Sambaran Petir Terjadi di Pasuruan Selama 2022. https://www.
suarasurabaya.net/Kelanakota/2023/Paling-Banyak-Se-Jatim-700-Ribu-Sambaran-Petir-Terjadi-Di-Pasuruan-Selama2022/
Thurnhofer-Hemsi, K., Lopez-Rubio, E., Bl ´ azquez-Parra, E. B., Ladr ´ on-de-Guevara-Mu ´ noz, M. C., & de-C ˜ ozar-Mac ´ ´ıas, O. D. ´
(2021). Ensemble ellipse fitting by spatial median consensus. Information Sciences, 579, 310–324. https : / / doi . org /
10.1016/j.ins.2021.08.011
Wahjudi, D. (2014). Mengatasi Bahaya Petir dan Proteksi Petir Gedung Bertingkat. Teodolita: Media Komunkasi Ilmiah di
Bidang Teknik, 15(2), 57–70. https://doi.org/10.53810/jt.v15i2.140
Zhao, C., Fu, C., Dolan, J., & Wang, J. (2021). L-Shape Fitting-Based Vehicle Pose Estimation and Tracking Using 3D-LiDAR.
IEEE Transactions on Intelligent Vehicles, 6(4), 787–798. https://doi.org/10.1109/TIV.2021.3078619
Published
2024-11-25
How to Cite
[1]
H. Lovytaji, R. Rozikan, D. Kuncoro, and R. D. Karisma, “Analyzing Lightning Strike Susceptibility Using the Elliptical Fitting Method with a Principal Component Analysis Approach”, Jurnal Varian, vol. 8, no. 1, pp. 25 - 38, Nov. 2024.
Section
Articles