Survival Analysis with Cox Proportional Hazard Model for Tuberculosis (TBC) Patients
Abstract
Survival analysis is a method in statistics which aims to analyze the relationship between time from the beginning of observation until the occurrence of an event (response variable) with factors that have an influence on the event (predictor variables). To determine the relationship between the response variable and the predictor variable, where the response variable is the time until the event occurs, one method that can be used is the cox proportional hazard regression method. The data used in this research is data on hospitalizations of tuberculosis sufferers at Haji Makassar Hospital in 2022 because it has characteristics that are in accordance with the aim of survival analysis, namely to determine the relationship between the life span of TBC patients and the factors that influence TBC disease. The results of the analysis obtained factors that significantly influence the recovery rate of patients with TBC are shortness of breath and smoking habits. The shortness of breath variable has an influence on the recovery rate of TBC patients, namely 0.3506, which means that TBC patients who do not experiencing shortness of breath has a recovery rate of 0.3506 times the likelihood of recovery compared to patients who experience shortness of breath. Variable smoking habit was 0.7367, which means that patients with TBC did not smoking habit has a recovery rate of 0.7367 times recovered compared to patients who had a smoking habit.
References
dengue hemorrhagic fever. In Journal of Physics: Conference Series, volume 1028, page 012242. IOP Publishing. DOI : https:
//doi.org/doi:10.1088/1742-6596/1028/1/012242.
Bustan, M. and Poerwanto, B. (2021). Logistic regression model of relationship between breast cancer pathology diagnosis with
metastasis. In Journal of Physics: Conference Series, volume 1752, page 012026. IOP Publishing. DOI : https://doi.org/10.1088/
1742-6596/1752/1/012026.
Chandra, N. E. and Rohmaniah, S. A. (2019). Analisis survival model regresi semiparametrik pada lama studi mahasiswa. Jurnal
Ilmiah Teknosains, 5(2):94–98.
Dewi, A. Y., Dwidayati, N. K., and Agoestanto, A. (2020). Analisis survival model regresi cox dengan metode mle untuk penderita
diabetes mellitus. Unnes Journal Of Mathematics, 9(1):31–40.
Dukalang, H. H. (2019). Analisis regresi cox proportional hazard pada pemodelan waktu tunggu mendapatkan pekerjaan. Jambura
Journal of Mathematics, 1(1):36–42.
Faisal, A. R., Bustan, M. N., and Annas, S. (2020). Analisis Survival Dengan Pemodelan Regresi Cox Proportional Hazard Menggunakan Pendekatan Bayesian (Studi Kasus: Pasien Rawat Inap Penderita Demam Tifoid Di Rsud Haji Makassar). PhD thesis,
UNIVERSITAS NEGERI MAKASSAR.
Fajarini, F. A. and Fatekurohman, M. (2018). Analisis premi asuransi jiwa menggunakan model cox proportional hazard. Indonesian
Journal of Applied Statistics, 1(2):88–99.
Fa’rifah, R. Y. and Poerwanto, B. (2019). Platelets and hematocrit in the survival model of dengue hemorrhagic fever (dhf) sufferers
in palopo. In Materials Science Forum, volume 967, pages 3–8. Trans Tech Publ.
Fernandes, A. A. R. et al. (2016). Pemodelan Statistika Pada Analisis Reliabilitas Dan Survival. Universitas Brawijaya Press.
Istuti, D. M. et al. (2019). Analisis ketahanan hidup data ties pasien tuberkulosis dengan metode exact likelihood pada model regresi
cox proportional hazard. MATHunesa: Jurnal Ilmiah Matematika, 7(2).
Ministry of Health of the Republic of Indonesia (2022). Indonesia Health Profile 2021. Jakarta: Ministry of Health of the Republic
of Indonesia.
Pertiwi, I. N. and Purnami, S. W. (2020). Regresi cox proportional hazard untuk analisis survival pasien kanker otak di c-tech labs
edwar technology tangerang. Inferensi, 3(2):65–72.
Poerwanto, B., FaRifah, R., Sanusi, W., and Side, S. (2018). A matlab code to compute prediction of survival trends in patients
with dhf. In Journal of Physics: Conference Series, volume 1028, page 012113. IOP Publishing. DOI : https://doi.org/10.1088/
1742-6596/1028/1/012113.
Ranstam, J. and Robertsson, O. (2017). The cox model is better than the fine and gray model when estimating relative revision risks
from arthroplasty register data. Acta orthopaedica, 88(6):578–580. DOI : https://doi.org/10.1080/17453674.2017.1361130.
Royston, P. and Altman, D. G. (2013). External validation of a cox prognostic model: principles and methods. BMC medical research
methodology, 13:1–15. DOI : https://doi.org/10.1186/1471-2288-13-33.
South Sulawesi Health Service (2021). South Sulawesi Province Health Profile 2021. Makassar: South Sulawesi Province Health
Profile 2021.
Tamara, D. V., Nurhayati, S., and Ludiana, L. (2021). Penerapan inhalasi sederhana menggunakan aromaterapi daun mint (mentha
piperita) terhadap sesak nafas pada pasien tb paru. Jurnal Cendikia Muda, 2(1):40–49.
Turkson, A. J., Ayiah-Mensah, F., and Nimoh, V. (2021). Handling censoring and censored data in survival analysis: a standalone
systematic literature review. International journal of mathematics and mathematical sciences, 2021:1–16. DOI : https://doi.org/
10.1155/2021/9307475.
This work is licensed under a Creative Commons Attribution 4.0 International License.