Implementasi Support Vector Regression pada Prediksi Inflasi Indeks Harga Konsumen
DOI:
https://doi.org/10.30812/matrik.v19i1.511Keywords:
SVM, RBF, Linear, InflationAbstract
Inflation reflects an increase in the prices of these items as well as those used by the Indonesian government, especially Bank Indonesia, in determining monetary policy. An indicator that can be obtained by Bank Indonesia in measuring inflation is the Consumer Price Index. This study discusses inflation prediction using the SVR method. Inflation test data issued by Bank Indonesia. As a comparison material for the kernel used in the SVR method using two kernels, namely Linear and Radial Base Function. The error rate evaluation results show that linear kernels produce better values, with a MAPE rate of 8.70% and MSE of 0.0037
Downloads
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Pardomuan Robinson Sihombing, Istiqomatul Fajriyah Yuliati, Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Zulfian Azmi, Ishak Ishak, Model Jaringan Syaraf Tiruan untuk Variabel tidak Pasti pada Kontrol Putaran Kincir Angin , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Joko Handoyo, Anton Yudhana, Sunardi Sunardi, Flood Vulnerability Mapping in Cepu Subdistrict Using Mamdani Fuzzy Inference System for Disaster Risk Reduction , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 25 No. 1 (2025)
- Siti Ummi Masruroh, Cong Dai Nguyen, Doni Febrianus, Comparative Analysis of TF-IDF and Modern Text Embedding for the Classification of Islamic Ideologies on Indonesian Twitter , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 25 No. 1 (2025)
- Aris Tjahyanto, Faisal Johan Atletiko, Peningkatan Kinerja Pengklasifikasi Objek Bawah Laut dengan Deep Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Budi Sumanto, Denting Romantika Java, Wahyu Wijaya, Jans Hendry, Seleksi Fitur Terhadap Performa Kinerja Sistem E-Nose untuk Klasifikasi Aroma Kopi Gayo , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
- Aji Bijaksana Abadi, Arif Fadllullah, Sumardi Sumardi, Sultan Mahdi, Audrey Nauffal Juniar, Perhitungan Indeks Massa Tubuh Less Contact Berbasis Computer Vision dan Regresi Linear , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Lusiana Efrizoni, Sarjon Defit, Muhammad Tajuddin, Anthony Anggrawan, Komparasi Ekstraksi Fitur dalam Klasifikasi Teks Multilabel Menggunakan Algoritma Machine Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Yuniar Farida, Adam Fahmi Khariri, Dian Yuliati, Hani Khaulasari, Clustering Couples of Childbearing Age to Get Family Planning Counseling Using K-Means Method , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Wikky Fawwaz Al Maki, Amien Jafar Makrufi, Support vector machine with a firefly optimization algorithm for classification of apple fruit disease , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
You may also start an advanced similarity search for this article.
.png)











