Combination Contrast Stretching and Adaptive Thresholding for Retinal Blood Vessel Image
DOI:
https://doi.org/10.30812/matrik.v22i1.1654Keywords:
Adaptive Thresholding, Blood Vessel, Contrast Stretching, Drive, Retinal Image, StareAbstract
To diagnose diabetic retinopathy is to segment the blood vessels of the retinal, but the retinal images in the DRIVE and STARE datasets have varying contrast, so the enhancement is needed to obtain a stable image contrast. In this study, image enhancement was performed using the Contrast Stretching and continued with segmentation using the Adaptive Thresholding on retinal images. The image that has been extracted with green channels will be enhanced with Contras Stretching and segmented with Adaptive Thresholding to produce a binary image of retinal blood vessels. The purpose of this study was to combine image enhancement techniques and segmentation methods to obtain valid and accurate retinal blood vessels. The test results on DRIVE were 95.68 for accuracy, 65.05% for sensitivity, and 98.56% for specificity. The test results of Adam Hoover’s ground truth on STARE were 96.13% for, 65.90% for sensitivity, and 98.48% for specificity. The test results for Valentina Kouznetsova’s ground truth on the STARE were 93.89% for accuracy, 52.15% for sensitivity, and 99.02% for specificity. The conclusion obtained is that the processing results on the DRIVE and STARE datasets are very good with respect to their accuracy and specificity values. This method still needs to be developed to be able to detect thin blood vessels with the aim of being able to improve and increase the sensitivity value obtained.
Downloads
References
Ensemble Approach for Diabetic Retinopathy Detection,†IEEE Access, vol. 7, pp. 150 530–150 539, 2019.
[2] K. Naveed, F. Abdullah, H. A. Madni, M. A. Khan, T. M. Khan, and S. S. Naqvi, “Towards Automated Eye Diagnosis: An
Improved Retinal Vessel Segmentation Framework Using Ensemble Block Matching 3d Filter,†Diagnostics, vol. 11, no. 1, pp.
1–27, 2021.
[3] Murinto, S. Winiarti, D. P. Ismi, and A. Prahara, “Image enhancement using piecewise linear contrast stretch methods based
on unsharp masking algorithms for leather image processing,†Proceeding - 2017 3rd International Conference on Science in
Information Technology: Theory and Application of IT for Education, Industry and Society in Big Data Era, ICSITech 2017,
vol. 2018-Janua, pp. 669–673, 2017.
[4] E. Erwin and D. R. Ningsih, “Improving Retinal Image Quality Using The Contrast Stretching, Histogram Equalization, and
CLAHE Methods with Median Filters,†International Journal of Image, Graphics and Signal Processing, vol. 12, no. 2, pp.
30–41, 2020.
[5] N. Chervyakov, P. Lyakhov, D. Kaplun, D. Butusov, and N. Nagornov, “Analysis of The Quantization Noise in DiscreteWavelet
Transform Filters for Image Processing,†Electronics (Switzerland), vol. 7, no. 8, 2018.
[6] H. Michalak and K. Okarma, “Region based adaptive binarization for optical character recognition purposes,†2018 International
Interdisciplinary PhD Workshop, IIPhDW 2018, pp. 361–366, 2018.
[7] O. Ali and N. Muhammad, “A comparative study of automatic vessel segmentation algorithms,†in 3rd International Conference
on Computing, Mathematics and Engineering Technologies (iCoMET), 2020, pp. 1–6.
[8] T. Mapayi, S. Viriri, and J.-r. Tapamo, “Comparative Study of Retinal Vessel Segmentation Based on Global Thresholding
Techniques,†Computational and Mathematical Methods in Medicine, vol. 2015, pp. 1–15, 2015.
[9] Y. Li, H. Gong, W. Wu, G. Liu, and G. Chen, “An Automated Method Using Messian Matrix and Random Walks for Retinal
Blood Vessel Segmentation,†Proceedings - 2015 8th International Congress on Image and Signal Processing, CISP 2015,
vol. 1, no. Cisp, pp. 423–427, 2016.
[10] A. Desiani, D. A. Zayanti, R. Primartha, F. Efriliyanti, and N. A. C. Andriani, “Variasi Thresholding untuk Segmentasi Pembuluh
Darah Citra Retina,†Jurnal Edukasi dan Penelitian Informatika JEPIN, vol. 7, no. 2, pp. 255–262, 2021.
[11] A. Akagic, E. Buza, and S. Omanovic, “Pothole Detection: An Efficient Vision Based Method Using RGB Color Space Image
Segmentation,†2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics,
MIPRO 2017 - Proceedings, pp. 1104–1109, 2017.
Combination Contrast Stretching . . . (Anita Desiani)
12 r ISSN: 2476-9843
[12] Vargaz vazques D, R. r. J, and J. A. R. Shancez, “Face segmentation using mathematical morphology on single faces,†IEEE,
pp. 3–6, 2016.
[13] Nurliadi, P. Sihombing, and M. Ramli, “Analisis Contrast Stretching Menggunakan Algoritma Euclidean Untuk Meningkatkan
Kontras Pada Citra Berwarna,†vol. 03, no. 2013, pp. 26–38, 2016.
[14] U. Erkan, L. G¨okrem, and S. Enginolu, “Different applied median filter in salt and pepper noise,†Computers and Electrical
Engineering, vol. 70, pp. 789–798, 2018.
[15] M. A. D´ıaz-Cort´es, N. Ortega-S´anchez, S. Hinojosa, D. Oliva, E. Cuevas, R. Rojas, and A. Demin, “A multi-level thresholding
method for breast thermograms analysis using Dragonfly algorithm,†Infrared Physics and Technology, vol. 93, no. August, pp.
346–361, 2018.
[16] X. Yan, M. Jia, W. Zhang, and L. Zhu, “Fault Diagnosis of Rolling Element Bearing Using A New Optimal Scale Morphology
Analysis Method,†ISA Transactions, vol. 73, pp. 165–180, 2018.
[17] W. Lilik, R. Imam, and P. Yudi, “Comparative Analysis of Image Steganography using SLT,DCT and SLT-DCT Algorithm,â€
Matrik : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 20, no. 1, pp. 169–182, 2020.
[18] S. Pal, S. Chatterjee, D. Dey, and S. Munshi, “Morphological operations with iterative rotation of structuring elements for
segmentation of retinal vessel structures,†Multidimensional Systems and Signal Processing, vol. 30, no. 1, pp. 373–389, 2019.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Putri Jafar, Dolly Indra, Fitriyani Umar, Color Feature Extraction for Grape Variety Identification: Naïve Bayes Approach , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Nella Rosa Sudianjaya, Chastine Fatichah, Segmentation and Classification of Breast Cancer Histopathological Image Utilizing U-Net and Transfer Learning ResNet50 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Muhammad Furqan Nazuli, Muhammad Fachrurrozi, Muhammad Qurhanul Rizqie, Abdiansah Abdiansah, Muhammad Ikhsan, A Image Classification of Poisonous Plants Using the MobileNetV2 Convolutional Neural Network Model Method , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Miftahuddin Fahmi, Anton Yudhana, Sunardi Sunardi, Image Processing Using Morphology on Support Vector Machine Classification Model for Waste Image , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Roudlotul Jannah Alfirdausy, Nurissaidah Ulinnuha, Wika Dianita Utami, Implementation of The Extreme Gradient Boosting Algorithm with Hyperparameter Tuning in Celiac Disease Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Imanuddin Imanuddin, Fachrid Alhadi, Raza Oktafian, Ahmad Ihsan, Deteksi Mata Mengantuk pada Pengemudi Mobil Menggunakan Metode Viola Jones , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Lilik Widyawati, Imam Riadi, Yudi Prayudi, Comparative Analysis of Image Steganography using SLT, DCT and SLT-DCT Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 1 (2020)
- Ismail Husein, Rina Widyasari, Algorithm Symmetric 2-DLDA for Recognizing Handwritten Capital Letters , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
- Dadang Priyanto, Bambang Krismono Triwijoyo, Deny Jollyta, Hairani Hairani, Ni Gusti Ayu Dasriani, Data Mining Earthquake Prediction with Multivariate Adaptive Regression Splines and Peak Ground Acceleration , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Bambang Suprihatin, Yuli Andriani, Fauziah Nuraini Kurdi, Anita Desiani, Ibra Giovani Dwi Putra, Muhammad Akmal Shidqi, Lungs X-Ray Image Segmentation and Classification of Lung Disease using Convolutional Neural Network Architectures , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Bambang Suprihatin, Yuli Andriani, Fauziah Nuraini Kurdi, Anita Desiani, Ibra Giovani Dwi Putra, Muhammad Akmal Shidqi, Lungs X-Ray Image Segmentation and Classification of Lung Disease using Convolutional Neural Network Architectures , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)