Peningkatan Kinerja Pengklasifikasi Objek Bawah Laut dengan Deep Learning
DOI:
https://doi.org/10.30812/matrik.v21i3.1466Keywords:
Deep learning, Pembangkit gema, Pembelajaran mesin, SONAR, Sorot-tunggalAbstract
Pengenalan objek bawah laut dapat dilakukan berdasarkan pola hamburan SONAR, seperti untuk deteksi ranjau dan deteksi batu yang terletak di dasar laut. Kesulitan yang dihadapi pada pengenalan objek bawah laut antara lain adalah pemilihan metode ekstraksi fitur, adanya rotasi objek yang menghasilkan pola hamburan yang berbeda, lingkungan atau latar belakang bervariasi, dan kemampuan pengklasifikasi yang berbeda untuk lingkungan yang lebih kompleks. Pada penelitian ini, kami menggunakan deep learning neural network untuk meningkatkan kinerja klasifikasi dua buah objek bawah laut. Secara khusus, dibandingkan jumlah neuron pada lapisan tersembunyi dan fungsi aktivasi yang dapat menghasilkan kinerja yang lebih tinggi dari penelitian sebelumnya. Pada penelitian sebelumnya, proses klasifikasi dilakukan dengan menggunakan neural network dengan 12 buah lapisan tersembunyi, dan menghasilkan akurasi maksimal sebesar 90.4%. Dilakukan percobaan pada struktur jaringan syaraf tiruan berupa multilayer perceptron dengan 2 buah lapisan tersembunyi dan 7 macam fungsi aktivasi. Dari percobaan yang dilakukan diperoleh
bahwa deep learning neural network memberikan rata-rata akurasi terbaik sebesar 85,9% dengan akurasi maksimal sebesar 96,15% lebih baik dibandingkan hasil penelitian sebelumnya. Akurasi terbaik tersebut diperoleh dengan memanfaatkan jumlah neuron pada lapisan tersembunyi sebanyak 140 buah, dan fungsi aktivasi reLU untuk lapisan tersembunyi fungsi aktivasi Linear untuk lapisan output.
Downloads
References
Envelope of Single-beam Sonar*,†in OCEANS 2019 - Marseille, 2019, pp. 1–5.
[2] H. Li, F. Yin, and C. Li, “A High-accuracy Target Tracking Method and Its Application in Acoustic Engineering,†in 2019 IEEE 4th
International Conference on Signal and Image Processing (ICSIP), 2019, pp. 690–694.
[3] D. Cook, K. Middlemiss, P. Jaksons, W. Davison, and A. Jerrett, “Validation of fish length estimations from a high frequency multibeam
sonar (ARIS) and its utilisation as a field-based measurement technique,†Fisheries Research, vol. 218, pp. 59–68, 2019.
[4] J. Helminen and T. Linnansaari, “Object and behavior differentiation for improved automated counts of migrating river fish using
imaging sonar data,†Fisheries Research, vol. 237, p. 105883, 2021.
[5] Y. Seo, B. Jang, and S. Im, “A Comparison of Machine Learning Schemes for Moving Direction Estimation with Acoustic Data,†in
2019 International Conference on Electronics, Information, and Communication (ICEIC), 2019, pp. 1–3.
[6] D. Einsidler, M. Dhanak, and P.-P. Beaujean, “A Deep Learning Approach to Target Recognition in Side-Scan Sonar Imagery,†in
OCEANS 2018 MTS/IEEE Charleston, 2018, pp. 1–4.
[7] Y. Steiniger, J. Stoppe, T. Meisen, and D. Kraus, “DealingWith Highly Unbalanced Sidescan Sonar Image Datasets for Deep Learning
Classification Tasks,†in Global Oceans 2020: Singapore U.S. Gulf Coast, 2020, pp. 1–7.
[8] R. Ghosh, “Sonar Target Classification Problem : Machine Learning Models,†vol. 9, no. 1, pp. 247–248, 2020.
[9] Z. Wei, Y. Ju, and M. Song, “A Method of Underwater Acoustic Signal Classification Based on Deep Neural Network,†in 2018 5th
International Conference on Information Science and Control Engineering (ICISCE), 2018, pp. 46–50.
[10] J. H. Christensen, L. V. Mogensen, and O. Ravn, “Deep Learning based Segmentation of Fish in Noisy Forward Looking MBES
Images,†IFAC-PapersOnLine, vol. 53, no. 2, pp. 14 546–14 551, 2020.
[11] G. Xu, Q. Chen, T. Yoshida, K. Teravama, Y. Mizukami, Q. Li, and D. Kitazawa, “Detection of Bluefin Tuna by Cascade Classifier
and Deep Learning for Monitoring Fish Resources,†in Global Oceans 2020: Singapore U.S. Gulf Coast, 2020, pp. 1–4.
[12] B. V. Deep and R. Dash, “Underwater Fish Species Recognition Using Deep Learning Techniques,†in 2019 6th International Conference
on Signal Processing and Integrated Networks (SPIN), 2019, pp. 665–669.
[13] J. Seok, “Active sonar target classification using multi-aspect sensing and deep belief networks,†International Journal of Engineering
Research and Technology, vol. 11, pp. 1999–2008, 2018.
Peningkatan Kinerja Pengklasifikasi . . . (Aris Tjahyanto)
760 r ISSN: 2476-9843
[14] L. J. Ziomek, An Introduction to Sonar Systems Engineering, 1st ed. Boca Raton: CRC Press, 2017.
[15] X. Wu, V. Kumar, Q. J. Ross, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, P. S. Yu, Z. H. Zhou, M. Steinbach,
D. J. Hand, and D. Steinberg, Top 10 algorithms in data mining. Chapman and Hall/CRC, dec 2009.
[16] H. Rahman, M. U. Ahmed, S. Begum, M. Fridberg, and A. Hoflin, “Deep Learning in Remote Sensing: An Application to Detect
Snow and Water in Construction Sites,†in 2021 4th International Conference on Artificial Intelligence for Industries (AI4I), 2021,
pp. 52–56.
[17] L. Deng and D. Yu, Deep Learning: Methods and Applications. Now Foundations and Trends, 2014.
[18] T. Arif, Introduction to Deep Learning for Engineers: Using Python and Google Cloud Platform. Morgan & Claypool, 2020, vol. 5.
[19] R. Vang-Mata, Multilayer Perceptrons: Theory and Applications. Nova Science, 2020.
Matrik: Jurnal
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Rizky Afrinanda, Lusiana Efrizoni, Wirta Agustin, Rahmiati Rahmiati, Hybrid Model for Sentiment Analysis of Bitcoin Prices using Deep Learning Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Miftahus Sholihin, Mohd Farhan Bin Md. Fudzee, Lilik Anifah, A Novel CNN-Based Approach for Classification of Tomato Plant Diseases , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Anugerah Bagus Wijaya, Suliswaningsih Suliswaningsih, Argiyan Dwi Pritama, Meningkatkan Rasa Nasionalisme Siswa Melalui Game Base Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Anthony Anggrawan, Christofer Satria, Tinjauan Kritis Jurnal Ilmiah: Pengembangan dan Evaluasi Formatif Studi Kasus Multimedia untuk Siswa Desain dan Teknologi Pembelajaran , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 1 (2018)
- Yuniansyah Yuniansyah, Andri Saputra, Pengembangan Multimedia Pembelajaran Pengenalan Huruf Hijaiyah Menggunakan Metode 4-D , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 17 No. 2 (2018)
- Lusiana Efrizoni, Sarjon Defit, Muhammad Tajuddin, Anthony Anggrawan, Komparasi Ekstraksi Fitur dalam Klasifikasi Teks Multilabel Menggunakan Algoritma Machine Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Yarza Aprizal, Rabin Ibnu Zainal, Afriyudi Afriyudi, Perbandingan Metode Backpropagation dan Learning Vector Quantization (LVQ) Dalam Menggali Potensi Mahasiswa Baru di STMIK PalComTech , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Muhammad Alkaff, Muhammad Afrizal Miqdad, Muhammad Fachrurrazi, Muhammad Nur Abdi, Ahmad Zainul Abidin, Raisa Amalia, Hate Speech Detection for Banjarese Languages on Instagram Using Machine Learning Methods , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Bambang Krismono Triwijoyo, Model Fast Tansfer Learning pada Jaringan Syaraf Tiruan Konvolusional untuk Klasifikasi Gender Berdasarkan Citra Wajah , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Edi Ismanto, Januar Al Amien, Vitriani Vitriani, A Comparison of Enhanced Ensemble Learning Techniques for Internet of Things Network Attack Detection , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
You may also start an advanced similarity search for this article.