Sentiment Analysis of e-Government Service Using the Naive Bayes Algorithm
DOI:
https://doi.org/10.30812/matrik.v23i2.3272Keywords:
Classfier, Google Playstore, Naïve Bayes, Opinion Mining, Sentiment AnalysisAbstract
E-Government which involves the use of communication and information technology to provide Public services have three obstacles. One of these obstacles is the implementation of e-Government by autonomous regional governments is still carried out individually. Apart from that, implementing the website regions are also not supported by efficient management systems and work processes, this is partly the case This is largely due to the lack of preparation of regulations, procedures and limited resources man. Apart from that, many local governments consider implementing e-Government only involves developing local government websites. More precisely, the implementation of e-Government It is only limited to the maturity stage and ignores the three other important stages that need to be completed. The aim of this research is to determine the level of public approval for government application services. This research uses the Naive Bayes Classifier approach as the methodology. The data sources used in this research consist of user reviews and comments obtained from Google Play Store. The results of this investigation produce a level of precision The highest is achieving a score of 83%. Additionally it shows an accuracy rate of 83%,level
completeness is 100%, and F-measure is 90.7%.
Downloads
References
[2] A. I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes,†JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 785–795, 2022, doi: 10.35957/jatisi.v9i2.1835.
[3] G. Y. Iskandarli, “Applying Clustering and Topic Modeling to Automatic Analysis of Citizens’ Comments in EGovernment,†Int. J. Inf. Technol. Comput. Sci., vol. 12, no. 6, pp. 1–10, 2020, doi: 10.5815/ijitcs.2020.06.01.
[4] A. Akram, N. Risal, D. Rezky, and A. Sulaiman, “Classification of Sentiment Analysis and Community Opinion Modeling Topics for Application of ICT in Government Operations,†vol. 5, no. 1, pp. 35–44, 2023, doi: https://doi.org/10.55151/ijeedu.v5i1.99.
[5] I. S. Jami and A. S. Zubair, “Semantic Web based E-Government System,†Indian J. Sci. Technol., vol. 11, no. 44, pp. 1–6, 2018, doi: 10.17485/ijst/2018/v11i44/132332.
[6] D. Joshi, M. Khalegaonkar, M. Lohikpure, P. Maan, and R. A. Deshmukh, “Sentimental Analysis on E-Governance,†Int. J. Innov. Res. Sci. Eng., vol. Vol.3, no. Issue 05, pp. 1–9, 2017, doi: http://ijirse.com/wp-content/upload/2017/03/PY2087ijirse.pdf.
[7] M. R. Fahlevvi, “Analisis Sentimen Terhadap Ulasan Aplikasi Pejabat Pengelola Informasi Dan Dokumentasi Kementerian Dalam Negeri Republik Indonesia Di Google Playstore Menggunakan Metode Support Vector Machine,†J. Teknol. dan Komun. Pemerintah., vol. 4, no. 1, pp. 1–13, 2022, doi: 10.33701/jtkp.v4i1.2701.
[8] A. Filemon, H. Kaban, and N. Yudistira, “Analisis Sentimen Aplikasi E-Goverment berdasarkan Ulasan Pengguna menggunakan Metode Maximum Entropy dan Seleksi Fitur Mutual Information,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 4, pp. 1452–1458, 2021, doi: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/8877.
[9] M. K. Anam, B. N. Pikir, and M. B. Firdaus, “Penerapan Na ̈ıve Bayes Classifier, K-Nearest Neighbor (KNN) dan Decision Tree untuk Menganalisis Sentimen pada Interaksi Netizen danPemeritah,†MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 1, pp. 139–150, 2021, doi: 10.30812/matrik.v21i1.1092.
[10] S. Abdelgaber, S. Abdel Gaber, and B. Kazim, “A Proposed Road Map To Enhance E-Government Services: Kuwait Case Study,†Researchgate.Net, no. December 2019, 2019, doi: https://www.researchgate.net/publication/339237461_A_Proposed_Road_Map_To_Enhance_E-Government_Services_Kuwait_Case_Study.
[11] R. I. Syah, Hoiriyah, and M. Walid, “Analisis Sentimen Pengguna Media Sosial Terhadap Aplikasi M-Health Peduli Lindungi dengan Metode Lexicon Based dan Naive Bayes,†vol. 3, no. 2, pp. 54–60, 2020, doi: http://dx.doi.org/10.21927/ijubi.v6i1.3275.
[12] T. Tinaliah and T. Elizabeth, “Analisis Sentimen Ulasan Aplikasi PrimaKu Menggunakan Metode Support Vector Machine,†JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 4, pp. 3436–3442, 2022, doi: 10.35957/jatisi.v9i4.3586.
[13] R. Apriani et al., “Analisis Sentimen dengan Naïve Bayes Terhadap Komentar Aplikasi Tokopedia,†J. Rekayasa Teknol. Nusa Putra, vol. 6, no. 1, pp. 54–62, 2019.
[14] A. Faesal, A. Muslim, A. H. Ruger, and K. Kusrini, “Sentimen Analisis Terhadap Komentar Konsumen Terhadap Produk Penjualan Toko Online Menggunakan Metode K-Means,†MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 19, no. 2, pp. 207–213, 2020, doi: 10.30812/matrik.v19i2.640.
[15] I. S. K. Idris, Y. A. Mustofa, and I. A. Salihi, “Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine (SVM),†Jambura J. Electr. Electron. Eng., vol. 5, no. 1, pp. 32–35, 2023, doi: 10.37905/jjeee.v5i1.16830.
[16] I. Di Estika, I. Darmawan, and O. N. Pratiwi, “Analisis Sentimen Ulasan Aplikasi Buka Lapak Untuk Peningkatan Layanan Menggunakan Algoritma Naive Bayes,†vol. 8, no. 5, pp. 4367–4376, 2021, doi: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/14676.
[17] S. Surohman, S. Aji, R. Rousyati, and F. F. Wati, “Analisa Sentimen Terhadap Review Fintech Dengan Metode Naive Bayes Classifier Dan K- Nearest Neighbor,†EVOLUSI J. Sains dan Manaj., vol. 8, no. 1, pp. 93–105, 2020, doi: 10.31294/evolusi.v8i1.7535.
[18] A. Athallah Muhammad et al., “Analisis Sentimen Pengguna Aplikasi Dana Berdasarkan Ulasan Ada Google Play Menggunakan Metode Support Vector Machine,†pp. 194–204, 2022, doi: https://conference.upnvj.ac.id/index.php/senamika/article/view/2171/1660.
[19] I. Atoum, “A novel framework for measuring software quality-in-use based on semantic similarity and sentiment analysis of software reviews,†J. King Saud Univ. - Comput. Inf. Sci., vol. 32, no. 1, pp. 113–125, 2020, doi: 10.1016/j.jksuci.2018.04.012.
[20] M. K. Khoirul Insan, U. Hayati, and O. Nurdiawan, “Analisis Sentimen Aplikasi Brimo Pada Ulasan Pengguna Di Google Play Menggunakan Algoritma Naive Bayes,†JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 478–483, 2023, doi: 10.36040/jati.v7i1.6373.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Susandri Susandri, Ahmad Zamsuri, Nurliana Nasution, Yoyon Efendi, Hiba Basim Alwan, The Mitigating Overfitting in Sentiment Analysis Insights from CNN-LSTM Hybrid Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Syahril Efendi, Poltak Sihombing, Sentiment Analysis of Food Order Tweets to Find Out Demographic Customer Profile Using SVM , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Denny Indrajaya, Adi Setiawan, Bambang Susanto, Comparison of k-Nearest Neighbor and Naive Bayes Methods for SNP Data Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Dimas Afryzal Hanan, Ario Yudo Husodo, Regania Pasca Rassy, Sentiment Study of ChatGPT on Twitter Data with Hybrid K-Means and LSTM , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Pungkas Subarkah, Enggar Pri Pambudi, Septi Oktaviani Nur Hidayah, Perbandingan Metode Klasifikasi Data Mining untuk Nasabah Bank Telemarketing , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 1 (2020)
- M. Khairul Anam, Bunga Nanti Pikir, Muhammad Bambang Firdaus, Susi Erlinda, Agustin Agustin, Penerapan Na ̈ıve Bayes Classifier, K-Nearest Neighbor (KNN) dan Decision Tree untuk Menganalisis Sentimen pada Interaksi Netizen dan Pemeritah , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Christofer Satria, Peter Wijaya Sugijanto, Anthony Anggrawan, I Nyoman Yoga Sumadewa, Aprilia Dwi Dayani, Rini Anggriani, Multi-Algorithm Approach to Enhancing Social Assistance Efficiency Through Accurate Poverty Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Sucipto Sucipto, Didik Dwi Prasetya, Triyanna Widiyaningtyas, Educational Data Mining: Multiple Choice Question Classification in Vocational School , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Anthony Anggrawan, Analisis Deskriptif Hasil Belajar Pembelajaran Tatap Muka dan Pembelajaran Online Menurut Gaya Belajar Mahasiswa , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- William Barkem, Jeckson Sidabutar, Digital Forensic Analysis of WhatsApp Business Applications on Android-Based Smartphones Using NIST , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Arny Lattu, Danny Manongga, Ade Iriani, Ekstraksi Pengetahuan pada Penurunan Minat Mahasiswa Mengikuti Bursa Kerja Menggunakan Soft System Methodology , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
.png)











